Stereoisomeric Pairs of Cyclic Quaternary Ammonium Salts. 320. Part I.<sup>1</sup> Stereospecificity in Quaternisations of N-Alkylcamphidines, 2-Methylpyrrolidines, 2-Methyl- and 4-Phenylpiperidines, trans-Decahydroguinolines, and Tropanes, and Configurations of the Diastereoisomeric Salts

By JAMES MCKENNA, JEAN M. MCKENNA, A. TULLEY, and J. WHITE

Quaternisation of N-alkyl derivatives of the bases named in the title is usually stereoselective, an axial approach of quaternising agent being apparently preferred for all the six-ring heterocycles except tropane, and an analogous approach cis to the 2-methyl group with tertiary 2-methylpyrrolidines. With tropanes, as in the tropines, the preferred approach is equatorial.

Introduction.—The aims of the work initiated by that reported in this group of four Papers are (a) an investigation of the degree of stereoselectivity exhibited in quaternisations of reduced cyclic N-alkyl tertiary bases with an alkylating agent containing an alkyl group different from that already attached to nitrogen, (b) the determination of configuration of the resultant quaternary salts, and (c) a study of their differential reactivity in elimination, substitution, and other reactions. An investigation, particularly of the first aspect (and a statement regarding the second), with a series of representative mono- and bi-cyclic bases is reported in the present Paper, while Parts II and III deal respectively with one important method (nuclear magnetic resonance spectroscopy) employed for determination of configuration of the diastereoisomeric quaternary salts and with aspects of differential reactivity for some of the stereoisomers. A general theoretical discussion is given in Part IV. Methods other than the n.m.r. procedure for determining configuration of the isomeric salts are described in this Paper (empirical infrared spectroscopy) and in Part IV (equilibration of methyl-benzyl isomeric pairs; consideration of type of stereoselectivity exhibited).

*Previous Work.*—Isolated examples of stereoselectivity in the quaternisation of cyclic N-alkyl-bases have been from time to time reported by several authors who have examined the process for, e.g., 4-phenylpiperidines<sup>2</sup> and norcodeines.<sup>3</sup> The most extensive work,

<sup>1</sup> This and the following three Papers are regarded as Parts VII—X in the series "Stereochemical Investigations of Cyclic Bases"; Part VI, Jewers and McKenna, J., 1960, 1575.
 <sup>2</sup> Mills, Parkin, and Ward, J., 1927, 2613.
 <sup>3</sup> Koczka and Bernáth, Chem. and Ind., 1958, 1401.

however, has been carried out in the tropine system chiefly by Fodor and his collaborators,<sup>4</sup> with some contributions from other authors.<sup>5</sup> Fodor found that when N-alkylnortropines (hydroxylated derivatives of the tropanes I; R = Me, Et,  $CH_2$ -CO<sub>2</sub>Et, etc.) were quaternised with the halide  $R^{1}X$ , the reaction led to a product (II), isomeric with that obtained when the groups R,  $R^1$  were introduced in the reverse sequence. Mixtures were obtained in analogous work with oscines, which carry an oxide bridge between the asterisked carbon atoms, but Fodor and his collaborators regarded the quaternisations of tropines as being stereospecific (*i.e.*, yielding in each reaction only one product) rather than merely stereoselective. The work of Closs<sup>6</sup> on the N-ethyl-N-methylpseudotropinium salts, and our own, reported below, on analogous salts derived from the parent base tropane makes this seem unlikely: quaternisations of all tropines are probably highly stereoselective, but minority proportions of diastereoisomeric quaternary salts in reaction mixtures are often revealed only by n.m.r. spectroscopy. In our own work with salts derived from 2-methylpyrrolidine we have found that samples of constant m. p. and i.r. spectrum from recrystallisation of quaternisation mixtures may be shown by n.m.r. analysis to contain two stereoisomers, each in substantial proportion. These points, and many similar in the literature--e.g., the uncertainties in the characterisation of isomeric N-ethyl-N-methyltropinium iodides,<sup>4a,5a,b</sup> and probably also the recent work of Trojánek et al.<sup>7</sup> in the camphidine field (discussed further below)-emphasize the commonest experimental pitfall facing workers in this field. (A common theoretical error in interpretation of the steric course of quaternisations of cyclic N-alkyl-bases is discussed in Part IV). We may note finally here the interesting series of isomeric N-methylquinolizidinium salts prepared and studied by Katritzky, Schofield, and their collaborators;<sup>8</sup> in these compounds, however, unlike those examined by ourselves, formal interconversion between diastereoisomers is associated with a cis-trans-change in ring fusion.

Stereoselectivity of Quaternisations.—Little comment is required on the preparation of the tertiary amines (N-alkyl derivatives of the bases named in the title) described in the Experimental section; the oxidative N-demethylation of tropane, modelled on a similar process recorded for analogous bicyclic bases,<sup>9</sup> worked surprisingly well, and rendered unnecessary investigation of more specific processes. With all six systems, we examined reaction mixtures obtained by methylating the N-ethyl- and ethylating the N-methylbases; in addition, for four of the systems (camphidine, 2-methylpyrrolidine, 2-methylpiperidine, and trans-decahydroquinoline) we obtained a more complete picture of stereoselectivity by using a wider range of N-alkyl groups (see Table 1). Quaternisations were carried out in acetone at room temperatures taking from a few minutes to a few hours for effective completion, and some reactions were also performed in refluxing acetone. The camphidines were refluxed, usually for longer periods, with the alkyl iodide in the same solvent. Except in alkylations with the tropanes, where it was omitted for manipulative reasons, anhydrous potassium carbonate was used in the quaternisations to prevent possible competitive formation of base hydriodides.\*

Where mixtures of camphidinium quaternary iodides were obtained from quaternisations the components were readily separated by fractional crystallisation, and shown to be

\* Hydriodide production especially in a rather slow alkylation with (quite pure) ethyl or higher alkyl iodide may be remarkably extensive even under mild reaction conditions in the absence of inorganic base; where such production is not associated with prior degradation of an unstable quaternary salt (as, e.g., with N-6 $\beta$ -cholestanyltrimethylammonium iodide) the reaction is not too readily interpreted, as it seems improbable that the organic base is attacking the iodide in an elimination process under the conditions being employed.

<sup>4</sup> Fodor, (a) Experientia, 1955, **11**, 129; (b) Tetrahedron, 1957, **1**, 86; (c) Chem. and Ind., 1961, 1500. <sup>5</sup> Inter al. (a) Findlay, J. Amer. Chem. Soc., 1953, **75**, 3204; (b) Zeile and Schulz, Chem. Ber., 1955, 88. 1078.

<sup>6</sup> Closs, J. Amer. Chem. Soc., 1959, 81, 5456.

<sup>8</sup> Trojánek, Komrsová, Pospíšek, and Čekan, Coll. Czech. Chem. Comm., 1961, 26, 2921.
<sup>8</sup> Moynehan, Schofield, Jones, and Katritzky, J., 1962, 2637.
<sup>9</sup> See Houben-Weyl, "Methoden der Organischen Chemie," 4th edn., Vol. 11/1, p. 976.

| -       | -                    | :su                                     | EtI                           |              |                       |                                  | •                  |                    |                                 |                                                   |                                                   |            |
|---------|----------------------|-----------------------------------------|-------------------------------|--------------|-----------------------|----------------------------------|--------------------|--------------------|---------------------------------|---------------------------------------------------|---------------------------------------------------|------------|
|         |                      | al proportio                            | > NPr <sup>a</sup> + I        | +++++        |                       | ~                                |                    |                    |                                 |                                                   |                                                   |            |
|         |                      | 0, roughly equ                          | >NEt + Pr <sup>a</sup> I      | +            |                       | ۰.                               |                    |                    |                                 |                                                   |                                                   |            |
|         |                      | quaternisation;                         | NCH <sub>2</sub> Ph + MeI     | ++++         | ++                    | +<br>+                           | +                  | +++                |                                 | +                                                 |                                                   |            |
|         | nisations in acetone | ninates in " reverse "                  | >NMe + PhCH <sub>2</sub> I >1 | ++++         | +                     | +                                | (*+ ▲ ──) 0        | +                  |                                 | 0 (*+ **) 0                                       |                                                   |            |
| TABLE 1 | ivity of quater      | sr which predon                         | >NPr <sup>a</sup> + MeI       | +++          |                       | +                                |                    | +                  |                                 | -]-                                               | ~                                                 |            |
|         | e of stereoselecti   | xcess of the isome<br>isomer found)     | > NMe + Pr <sup>a</sup> I >   | (0 ▲ → ) +   |                       | 0                                |                    | (*+ ▲ → ) 0        |                                 | (∗+ ▲ → ) 0                                       | ~·                                                |            |
|         | Degre                | s; +*, <i>slight</i> es<br>++, only one | >NEt + MeI                    | +++          |                       | ++                               |                    | +                  | ++                              | - -                                               | ÷                                                 | -+-<br>-+- |
|         |                      | nown proportion<br>ca. 5-20:1; +        | >NMe + EtI                    | (0 ▲ → ) +   |                       | (0 ▲ → ) +                       |                    | (*+ ▲ → ) 0        | +++                             | (∗+ ▲) 0                                          | (*+ ▲ → ) 0                                       | +<br>- -   |
|         |                      | (?, mixture in unk<br>+, ca. 2-5:1; ++, | Base system                   | Camphidine " | ?-Methylpyrrolidine ª | ?-Methylpyrrolidine <sup>b</sup> | ?-Methylpiperidine | ?-Methylpiperidine | t-Phenylpiperidine <sup>b</sup> | <i>vans</i> -Decahydro-<br>quinoline <sup>a</sup> | <i>rans</i> -Decahydro-<br>quinoline <sup>b</sup> | lropane    |

1713

homogeneous by i.r. and especially n.m.r. spectroscopy. Quaternary iodides derived from 2-methylpyrrolidines were partially separated by fractional crystallisation, but the apparently pure specimens were usually shown to be heterogeneous by n.m.r. spectroscopy; isomer proportions in the reaction mixtures were therefore derived from a combination of data. Nearly pure specimens of the isomeric 1-ethyl-1-methyl-4-phenylpiperidinium salts were obtained by fractional crystallisation, in agreement with the observations of Mills and his collaborators,<sup>2</sup> but with derivatives of other base systems total crude quaternisation mixtures were examined by n.m.r. spectroscopy to get an approximate indication of isomer proportions, and in most such cases a measure of supporting evidence was derived from fractional crystallisation (see Table 4). Attempted separation of one pair of "methylethyl" diastereoisomeric iodides (derived from *trans*-decahydroquinoline) by paper chromatography in a butanol-water system failed, although it was possible to separate homologous salts by this method.

For presentation of an overall picture of degree of stereoselectivity in these quaternisations we believe that a symbolism like that adopted in Table 1 is preferable to quotation of percentages or fractional yields, since the quaternisations were carried out under preparative rather than closely controlled kinetic conditions, and analytical techniques have not been refined to give high accuracy; moreover, use of a limited number of symbols emphasizes qualitative similarities between degrees of stereoselectivity found in the quaternisations in the different systems. The data in Table 1 are much more developed than those presented in the corresponding Table in our preliminary communication; <sup>10</sup> the chief differences are that (a) we have modified our interpretation of the steric course of some of the quaternisations of 2-methylpiperidines, for reasons stated in the following Paper (Part II), (b) the symbol +++ is now used only where there is no available evidence of any kind that more than one isomer is produced, *i.e.*, reactions thus symbolised are stereospecific or virtually so under the reaction conditions employed, and (c) a wider range of quaternisations has now been studied.

It is noteworthy that although mixtures containing approximately equal proportions of isomers were obtained in a few reactions, in no case was the *strongly* predominant product of one quaternisation also that of the reaction sequence in which the alkyl groups were inserted in the reverse order.

Configurations of Diastereoisomeric Quaternary Ammonium Salts.—One important method, n.m.r. spectroscopy (see Part II), is applicable only when a spectroscopic relationship can be established between the N-methyl hydrochloride (to which a preferred configuration must be assigned) and the related quaternary salts. There is no difficulty in writing down the preferred configuration of any of the N-methyl hydrochlorides, since a methyl group is obviously more space-demanding than hydrogen, and relative compressions in the two bonding spaces around each nitrogen atom in the range of bases studied are readily assignable except perhaps in the case of tropane.\* Where the relevant spectroscopic relationship cannot be established the n.m.r. method is inapplicable; this was the case with derivatives of 4-phenylpiperidine and *trans*-decahydroquinoline. The close similarity between n.m.r. curves of corresponding derivatives of *trans*-decahydroquinoline and 2-methylpiperidine, however (see Part II) is probably due to analogous configurations in analogous salts derived from each base system—in both cases a 2-alkylpiperidine.

A subsidiary criterion for configurational assignments with the quaternary salts is

\* Perhaps the most important evidence for assignment of an eq-NMe structure to the hydrochloride of any basic tropine or tropane is the n.m.r. spectroscopic relationship established by Closs <sup>6</sup> between the hydrochloride of pseudotropine and the related N-ethyl-N-methyl quaternary salts, the configurations of which are known from analogy with Fodor's results and from X-ray analysis of N-ethylnortropine methobromide.<sup>11</sup> It is clear, therefore, that our configurational assignments for tropane quaternary salts depend ultimately on Fodor's classical work with the tropines, and on the more recent X-ray work, and indeed we made these salts mainly for the degradative investigation described in Part III.

<sup>10</sup> McKenna, White, and Tulley, Tetrahedron Letters, 1962, 1097.

<sup>11</sup> Quoted by Fodor, ref. 4c.

based on i.r. spectroscopy. Zeile and Schulz<sup>5b</sup> found characteristic differences between epimeric pairs in the tropine field in, *inter alia*, the 850-900 cm.<sup>-1</sup> region, and differences in the same region with camphidine quaternary salts were noted by Trojánek et al. A general

| Diagnostic bands in infrared | l spectra of quaterna   | ry iodides                    |
|------------------------------|-------------------------|-------------------------------|
| Base system                  | Isomeric salts          | Bands (cm1)                   |
| Camphidine                   | >NMeEt                  | 878, 898                      |
| -                            | >NMePr <sup>n</sup>     | 884, 899                      |
|                              | > NMeCH <sub>2</sub> Ph | 880, 897                      |
| 2-Methylpyrrolidine          | >NMeEt                  | 847, 898                      |
|                              | $>$ NMe $Pr^n$          | 846, 897                      |
|                              | > NMeCH <sub>2</sub> Ph | 865, 890                      |
| 2-Methylpiperidine           | >NMeEt                  | Not sufficiently well defined |
|                              | $>$ NMe $Pr^{n}$        | ,, ,,                         |
|                              | >NMeCH <sub>2</sub> Ph  | ,, ,,                         |
| 4-Phenylpiperidine           | >NMeEt                  | 865, 897                      |
| trans-Decahydroquinoline     | >NMeEt                  | Not sufficiently well defined |
| • •                          | $>$ NMe $Pr^{n}$        | ,, ,,                         |
|                              | >NMeCH <sub>2</sub> Ph  | ,, ,,                         |
| Tropane                      | >NMeEt                  | 867, 889                      |
| 110pane                      |                         | 801, 889                      |

TABLE 2

rule, applicable to all our salts with configuration deduced by application of other methods (except those derived from 2-methylpiperidine: see below), is that in the approximate region 840-900 cm.<sup>-1</sup> there is a diagnostic band at high (>ca. 855 cm.<sup>-1</sup>) or at lower frequency for NMe equatorial or axial respectively (or, in the case of 2-methylpyrrolidine derivatives, for NMe respectively trans or cis to CMe). Often two "diagnostic" bands (and sometimes others) are observed in one spectrum, but in such cases there is a characteristic increase in intensity of diagnostic band in the higher region (ca.  $885-900 \text{ cm}^{-1}$ ) and/or an analogous reduction in the lower region (ca. 840-885 cm<sup>-1</sup>) in the spectrum of the salt with eq-NMe as compared with that with ax-NMe. If the rule is extended to cover derivatives of 4-phenylpiperidine, configurations for quaternary salts in this system may be derived. The application of this rule is less clear-cut, however, with many of the derivatives of trans-decahydroquinoline, 2-methylpiperidine, and 2-methylpyrrolidine, perhaps because of the (known) degree of sample heterogeneity in these systems, and we feel unable to quote " diagnostic " bands for the first two of these systems.

Application of these two methods and/or the other two described in Part IV shows that in the camphidine, 2-methyl- and 4-phenyl-piperidine and trans-decahydroquinoline systems an axial approach of quaternising agent to tertiary base is preferred in reactions of marked stereoselectivity; a *cis* (to CMe) approach (analogous to axial in the above six-memberedring heterocycles) is preferred in quaternisations of tertiary 2-methylpyrrolidines. In tropane, however, as in tropines, the preferred approach is equatorial.

Direct X-ray evidence on the configuration of some of the pure quaternary salts described would be of considerable value (see also Part IV) and it is hoped that this may be provided in due course. A preliminary examination  $^{12}$  of the N-benzylcamphidine methiodide led to evaluation of the unit cell parameters, but unfortunately these do not allow an unambiguous configurational assignment.

Work of Trojánek et al.—In a Paper published after our work in the relevant area had been completed, Trojánek et al. describe the preparation of a similar range of diastereoisomeric salts related to camphidines, derived in their work from (+)-camphorimide. The quaternisations were carried out at temperatures different from those we used (50 and 100° are quoted in two examples) and in the absence of inert solvent. Only one isomer was obtained in each quaternisation, including several reactions where we isolated both isomers. We have not specifically checked the Czechoslovakian workers' experiments (insufficient details are in any case given in most examples to allow an exact check), but in our own

<sup>12</sup> Smith and White, Acta Cryst., 1963, 16, 930.

earlier work we have in several reactions shown that use of methyl or ethyl alcohol in place of acetone, using refluxing acetone rather than the same solvent at room temperature (see Table 1), or dispensing with a solvent altogether made little difference to isomer ratio,

|                              | Te                  | rtiary bases and de                                    | rivativ                       | ves                                    |                                     |                              |                                     |             |
|------------------------------|---------------------|--------------------------------------------------------|-------------------------------|----------------------------------------|-------------------------------------|------------------------------|-------------------------------------|-------------|
| Compound "                   | В. р.               | M. p. (ref. m. p. in<br>brackets); recryst.<br>solvent | Anal<br>line)<br>(bott<br>mol | ysis, H<br>, Reqo<br>om lin<br>lecular | Found<br>d. or C<br>e, opp<br>formu | (top<br>alc.<br>osite<br>la) | Mol.<br>formula                     | Ref.        |
|                              |                     |                                                        | С                             | H                                      | Ν                                   | Cl                           |                                     |             |
| (1) Derivatives of camph     | 1d1ne:              |                                                        | 78.0                          | 19.7                                   | 0.1                                 |                              |                                     |             |
| IV meenyi base               | <i>51  2</i> 8 mm.  |                                                        | 79·0                          | 12.7                                   | 8·4                                 |                              | C,,H.,N                             | 5           |
| N-methyl picrate             |                     | 236° (234) EtOH                                        | 51.5                          | 6.2                                    | 14.2                                |                              |                                     |             |
| N-methyl hydrochloride       |                     | 216 (227) Me <sub>2</sub> CO                           | 51.2                          | 6.1                                    | 14·1<br>6·8                         |                              | $C_{17}H_{24}N_4O_7$                | c           |
|                              |                     |                                                        |                               |                                        | 6.9                                 |                              | $C_{11}H_{22}NCl$                   | ь           |
| N-methyl picrolonate         |                     | 216 EtOH                                               | 58.1                          | 6.6<br>6.7                             | 16.0                                |                              | снио                                |             |
| N-ethyl base                 | 110/28 mm.          |                                                        | 79·3                          | 12.9                                   | 8.1                                 |                              | $O_{21} II_{29} IV_5 O_5$           |             |
| NT stheet bissues            | ·                   | 170 (155) * E4011                                      | 79·6                          | 12.7                                   | 7.8                                 |                              | $\mathrm{C_{12}H_{23}N}$            | 7           |
| N-ethyl picrate              |                     | 178 (155) * EtOH                                       | 52·5<br>52·7                  | 6·3                                    | 13.6                                |                              | C., H., N.O.                        | 7           |
| N-ethyl hydrochloride        |                     | Sublimes 210-260                                       | 66.0                          | 10.9                                   | 6.5                                 |                              | 018-26-14-7                         | •           |
| N-propul base                | 180-182             | (m. p. 274) AcMe                                       | 66·2<br>80.2                  | 11·0<br>19.0                           | 6·4<br>7.1                          |                              | $C_{12}H_{24}NCl$                   | 7           |
| 11-propy: buse               | 100102              |                                                        | 80.0                          | 12.9<br>12.8                           | $7.1 \\ 7.2$                        |                              | $C_{13}H_{25}N$                     | 7           |
| N-propyl picrate             |                     | 168 (168) EtOH                                         | 54·1                          | 6.9                                    | 13.7                                |                              |                                     | _           |
| N-benzvl base                | 165/30 mm.          |                                                        | 53·8<br>84·1                  | 0.0<br>10.3                            | 13.2                                |                              | $C_{19}H_{28}N_4O_7$                | 7           |
|                              |                     |                                                        | 83.9                          | 10.3                                   | 5.8                                 |                              | $\rm C_{17}H_{25}N$                 | 7           |
| N-benzyl picrate             |                     | 154 (156                                               | 58·2                          | 6·1                                    | 11.8                                |                              | СНИО                                | 7           |
| N-n-propylcamphorimide       |                     | 57 petrol                                              | 69·8                          | 9·4                                    | 6.3                                 |                              | 023112811407                        | •           |
|                              |                     | -                                                      | 69·9                          | 9.5                                    | <b>6</b> ∙ <b>3</b>                 |                              | $\mathrm{C_{13}H_{21}NO_2}$         |             |
| (2) Derivatives of 2-met     | hylpyrrolidine      |                                                        |                               |                                        |                                     |                              |                                     | a           |
| N-methyl hydrochloride       |                     | 232 (234) EIOH<br>224 AcMe                             | 52.5                          | 10.3                                   |                                     | 26.1                         |                                     | u           |
|                              |                     |                                                        | <b>53</b> ·1                  | 10.4                                   |                                     | $26 \cdot 2$                 | $C_6H_{14}NCl$                      |             |
| N-ethyl picrate              |                     | 190 (194) EtOH<br>123 FtOH                             | 46.8                          | 5.7                                    | 15.3                                |                              |                                     | e           |
|                              |                     |                                                        | 47.2                          | 5.6                                    | 15.7                                |                              | $C_{14}H_{20}N_4O_7$                |             |
| N-benzyl hydrochloride       |                     | 168 (173) AcMe-                                        |                               |                                        |                                     |                              |                                     | ſ           |
| (2) Derivetives of 9 met     | hulpiporiding       | Et <sub>2</sub> U                                      |                               |                                        |                                     |                              |                                     |             |
| N-methyl hydrochloride       | nyipipename.        | 250 (259) AcMe                                         |                               |                                        |                                     |                              |                                     | g           |
| N-ethyl picrate              |                     | 185 (189) EtOH                                         | <b>47</b> ·1                  | $5 \cdot 9$                            | 15.6                                |                              |                                     |             |
| N-n-propul picrate           |                     | 112 (113) FtOH                                         | 47.2                          | 5.6                                    | 15.7                                |                              | $C_{14}H_{20}N_4O_7$                | h<br>i      |
| N-benzoyl                    | 140142/             | 40-42 (45)                                             |                               |                                        |                                     |                              |                                     | j           |
| NT Lawrent Landara - Liouida | 0.5 mm.             | 106 100 A .M.                                          | 60.0                          | 0.0                                    | 0.9                                 |                              |                                     |             |
| n-oenzyi nyarochioriae       |                     | 180-188 Acme                                           | $69.2 \\ 69.2$                | 8.9                                    | 6·3                                 |                              | C12HanNCl                           |             |
| (4) Derivatives of 4-phe     | nylpiperidine:      |                                                        |                               |                                        |                                     |                              | 15 20                               |             |
| N-methyl base                | 124/10  mm.         | <b>16</b> (9)                                          |                               | - <b>-</b>                             |                                     |                              |                                     | 2           |
| N-methyl hydrochloride       |                     | 184 (196                                               | 67·9<br>68·1                  | 8.7                                    |                                     | 16.5                         | C.,H.,NCl                           | 2           |
| N-methyl picrate             |                     | 234 (244) EtOH                                         |                               | 00                                     |                                     | 100                          | 01211181101                         | $\tilde{2}$ |
| N-ethyl base                 | <b>138/0·9 mm</b> . | 18 (11)<br>102 (202 205)                               | 60.4                          | 0.9                                    | 5.0                                 |                              |                                     | <b>2</b>    |
| n-euryi nyurocmonue          |                     | AcMe-Et <sub>2</sub> O                                 | 69·2                          | 8.9                                    | $6\cdot 2$                          |                              | C <sub>13</sub> H <sub>20</sub> NCl | <b>2</b>    |
| Derivatives of 1-ethyl-1,    | 2,3,6-tetrahyd      | lro-4-phenyl-1-pyridi                                  | ne:                           |                                        |                                     |                              | 20 20                               | 17          |
| пуагостоглае                 |                     | EtOH-Et <sub>s</sub> O                                 |                               |                                        |                                     |                              |                                     | 14          |
| picrate                      |                     | 107 EtOH                                               | 54.8                          | 5.1                                    | 13.1                                |                              | 0 II N 0                            |             |
|                              |                     |                                                        | 54.8                          | <b>4·8</b>                             | 13.4                                |                              | $C_{19}H_{20}N_4O_7$                |             |

## TABLE 3

|                            |                    | TABLE 3   (Continue)                                   | ued)                          |                                         |                                    |                               |                                                                      |      |
|----------------------------|--------------------|--------------------------------------------------------|-------------------------------|-----------------------------------------|------------------------------------|-------------------------------|----------------------------------------------------------------------|------|
| Compound <sup>a</sup>      | В. р.              | M. p. (ref. m. p. in<br>brackets); Recryst.<br>solvent | Anal<br>line)<br>(bott<br>mo  | ysis, F<br>), Reqo<br>om lin<br>lecular | found<br>1. or C<br>e, opp<br>form | (top<br>alc.<br>osite<br>1la) | Mol.<br>formula                                                      | Ref. |
|                            |                    |                                                        | С                             | н                                       | Ν                                  | Cl                            |                                                                      |      |
| (5) Derivatives of trans-d | ecahydroqu         | inoline:                                               |                               |                                         |                                    |                               |                                                                      |      |
| N-methyl picrate           |                    | 172 (171—173)<br>EtOH                                  | $49 \cdot 9 \\ 50 \cdot 2$    | 5·7<br>5·7                              | 14·9<br>14·7                       |                               | <b>C</b> <sub>16</sub> H <sub>22</sub> N <sub>4</sub> O <sub>7</sub> | k    |
| N-methyl hydrochloride     |                    | 186 AcMe–Et <sub>2</sub> O                             | 63·1<br>63·3                  | 10∙8<br>10∙5                            |                                    | $18.6 \\ 18.7$                | C <sub>10</sub> H <sub>20</sub> NCl                                  |      |
| N-ethyl picrate            |                    | 112—114 EtOH                                           | $51.4 \\ 51.5$                | 6·2<br>6·1                              | $14 \cdot 1 \\ 14 \cdot 2$         |                               | $C_{17}H_{24}N_4O_7$                                                 |      |
| N-propyl picrate           |                    | 124 EtOH                                               | $52 \cdot 8 \\ 52 \cdot 7$    | 6∙6<br>6∙3                              | 13∙6<br>13∙7                       |                               | $C_{18}H_{26}N_4O_7$                                                 |      |
| N-benzyl picrate           |                    | 184                                                    | $57{\cdot}4$<br>57 ${\cdot}6$ | $5\cdot 8$<br>$5\cdot 7$                | $12.5 \\ 12.2$                     |                               | $C_{22}H_{26}N_4O_7$                                                 |      |
| (6) Derivatives of tropan  | e:                 |                                                        |                               |                                         |                                    |                               |                                                                      |      |
| tropane hydrochloride      |                    | Sublimes 206<br>EtOH-Et <sub>2</sub> O                 | 59·6<br>59·5                  | $10.2 \\ 9.9$                           |                                    | 22·3<br>22·0                  | C <sub>8</sub> H <sub>16</sub> NCl                                   |      |
| tropane picrate            |                    | <b>3</b> 08( <i>d</i> ) (281) AcMe                     | 47·5<br>47·4                  | $5 \cdot 2 \\ 5 \cdot 1$                | $16.0 \\ 15.8$                     |                               | $C_{14}H_{18}N_4O_7$                                                 | m    |
| N-acetylnortropane         | 140—142/<br>20 mm. |                                                        |                               |                                         | 9∙0<br>9∙1                         |                               | C <sub>9</sub> H <sub>15</sub> NO                                    |      |
| N-ethylnortropane picrate  |                    | 236—238 EtOH                                           | $48.7 \\ 48.9$                | 5∙5<br>5∙4                              | $15.3 \\ 15.2$                     |                               | $C_{15}H_{20}N_4O_7$                                                 |      |

<sup>a</sup> "New" compounds italicised. <sup>b</sup> Rice and Grogan, J. Org. Chem., 1957, 22, 185. <sup>e</sup> von Auwers, J. prakt. Chem., 1922, 105, 108. <sup>d</sup> Löffler, Ber., 1910, 43, 2046. <sup>e</sup> Signaigo and Adkins, J. Amer. Chem. Soc., 1936, 58, 709. <sup>f</sup> Stravrovskaya, J. Gen. Chem. U.S.S.R., 1955, 25, 133. <sup>g</sup> Lipp, Annalen, 1896, 289, 227. <sup>h</sup> Winans and Adkins, J. Amer. Chem. Soc., 1932, 54, 306. <sup>i</sup> Ladenburg, Annalen, 1899, 304, 76. <sup>j</sup> Bunzel, Ber., 1889, 22, 1054. <sup>k</sup> Bailey, Haworth, and McKenna, J., 1954, 967. <sup>i</sup> Ladenburg, Ber., 1883, 16, 1408. <sup>m</sup> Willstätter, Annalen, 1901, 317, 328. <sup>m</sup> All m. p.s of camphidine derivatives quoted in ref. 7 are for active compounds rather than racemic.

and raising the reaction temperature would, if anything, be expected to reduce specificity. We therefore think that the Czechoslovakian workers have failed to identify a second isomer in reaction mixtures where it was the minor component, and this belief is supported by some differences in the 850—900 cm.<sup>-1</sup> region between their published i.r. curves and ours. The m. p.s of some of our quaternary salts are markedly higher than those recorded by Trojánek *et al.*, but the data are not strictly comparable, as we were working with racemates in all cases. A twisted boat form has been suggested by Trojánek *et al.* for the camphidine quaternary salts. We agree that both a regular chair and a regular boat conformation would be very unlikely because of high internal strains, but we think that since twisting of the camphidine boat is a rather energy-consuming process because of rigidity introduced by the  $-CH_2 \cdot CH_2$ — bridge, a deformed chair conformation (part-way deformed towards the regular boat form) is more likely for the salts;\* this suggestion is also supported by the n.m.r. evidence (see Part II). It is clear that the expression " axial approach " (of quaternising agent) used earlier must therefore be interpreted fairly broadly, in its geometrical connotation, in application to the camphidine quaternisations.

## EXPERIMENTAL

Preparation of Bases.—N-Alkylcamphidines were prepared by reduction of the corresponding camphorimides in ether (NMe; NEt) or tetrahydrofuran (NPr<sup>n</sup>; N·CH<sub>2</sub>·Ph) with lithium aluminium hydride. 1-Alkyl-2-methylpyrrolidines were obtained from 1,4-dibromopentane

<sup>\*</sup> Added in Proof: Recent X-ray work (to be published shortly) by Dr. A. J. Smith and Mr. P. L. Jackson of this Department has confirmed this suggestion for the N-ethyl base methiodide, which is also shown to have the confirmation (ax-NMe) assigned on other grounds in this Paper.

|         | Analysis        | alc.<br>e mol.<br>ound<br>es)<br>N Formula Name <sup>e</sup> (if " new " compound)                                                 | 4-1<br>4-0 C TT T                                | 4.5 C <sub>13</sub> H <sub>26</sub> LN N-envy-N-mennycampniannum<br>4.2 iodides | 12.9<br>13.9 C H N O N-othel N-mothel complification | 10.2 Up12811407 Inventor memory unipromining |                                                                               |             | 4.]<br>1.0 C H IN N moteril N hashed on this first one                         | 4.2 CIAN 28-11 IN-memory-IN-proprioun-putumentum<br>3.9 iodides | 12.6<br>10.0 C H N O N motel N bushelombitidining | 12.7 Control North New |                                                         |                         |                                             | 3.4 3.4 N Lineard N materialization | 0.0 U18112811 IN-DENZY-IN-THERNYLUMIPRIATINI | 11.3 Nbenzyl-N-methylcamphidinium<br>11.5 C <sub>24</sub> H <sub>30</sub> N <sub>4</sub> O <sub>7</sub> picrate |                                            |
|---------|-----------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|-------------------------|---------------------------------------------|-------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------|
|         | ``              | d. or C<br>pposite<br>da); F<br>her line<br>H                                                                                      | 8.0<br>.8                                                                         | ×<br>v<br>i<br>v                                                                | 6-9<br>6-6                                           | 6.9                                          |                                                                               |             | 67 C                                                                           | 50 0<br>80 0                                                    | 1.7                                               | 7.5<br>0.0                                                 |                                                         |                         |                                             | 1.3<br>2                            | 7.2                                          | $\begin{array}{c} 6.1\\ 6.2\end{array}$                                                                         |                                            |
| 2       | lts             | Req<br>(line of<br>(of)<br>(of)                                                                                                    | 48.3                                                                              | 48·3<br>48·6                                                                    | 53-9<br>53-9                                         | 53-9                                         |                                                                               |             | 49.6                                                                           | 49-8<br>49-8                                                    | 54.8                                              | 04-0<br>54-6                                               |                                                         |                         |                                             | 56·1                                | 55-9                                         | 59-1<br>59-3                                                                                                    |                                            |
| TABLE 4 | ernisation resu | Structure or<br>compn. of<br>fraction                                                                                              | Pure III(b)                                                                       | Pure III(a)                                                                     | Pure III(b)                                          | Pure III(a)                                  | Pure III(b)                                                                   | Pure III(b) | Pure III(b)                                                                    | Pure III(a)                                                     | Pure III(b)                                       | Pure III(a)                                                | Pure III(b)                                             | Pure III(b)             |                                             | Pure III(a)                         | Pure III(b)                                  | Pure III(a)                                                                                                     | TTT/L/                                     |
| (       | Quat            | Salt fractions <sup>b</sup><br>Anion; solvents for fractn. or<br>recryst. m. p. (ref. m. p. in<br>brackets, with ref. superscript) | I <sup>-</sup> fract. <i>ex</i> AcMe; AcMe-Et <sub>2</sub> O:<br>(1) 245° (238) 7 | (2) 255 $(249)$ 7                                                               | Picrates " ex EtUH-Et <sub>2</sub> U:<br>151 (159) 7 | 178                                          | I- fract. ex AcMe; AcMe-Et <sub>2</sub> O:<br>(1) 245<br>Biante de EtOU Et O. |             | I <sup>-</sup> fract. <i>ex</i> AcMe; AcMe-Et <sub>2</sub> O:<br>(1) 202 (184) | (2) 198 (193) $7$                                               | FICTAGES 6# EUOIN:<br>132                         | 130                                                        | I- fract. $ex$ AcMe; AcMe-Et <sub>2</sub> O:<br>(1) 202 | FICTATE EX ETUH:<br>132 | I- fract. ex CHCl <sub>3</sub> -AcMe; EtOH- | (1) 210 (191) 7                     | $(2) 200 (182)^7$                            | Fictate ex ±0011:<br>169 (138) <sup>7</sup>                                                                     | I- fract. ex AcMe; AcMe-Et <sub>2</sub> O: |
|         |                 | Reaction "; Time; Yield <sup>J</sup>                                                                                               | Derivatives of camphidine:<br>>NMe + EtI; 36 hr.                                  |                                                                                 |                                                      |                                              | >NEt + MeI;24 hr.                                                             |             | >NMe + Pr <sup>a</sup> I; 48 hr.; 90%                                          |                                                                 |                                                   |                                                            | >NPr <sup>a</sup> + MeI; 24 hr.                         |                         | >NMe + Ph·CH <sub>2</sub> I; minutes        |                                     |                                              |                                                                                                                 | >N·CH <sub>a</sub> Ph + MeI; 24 hr.; 75%   |

1718 McKenna, McKenna, Tulley, and White: Stereoisomeric

| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |                                                                    |                                 | d.                                 | 4                                    | Analysi                       | S                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------|---------------------------------|------------------------------------|--------------------------------------|-------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | Salt fractions <sup>b</sup><br>Anion; solvents for fractn. or      | Structure or                    | Keqd<br>(line of<br>formul<br>(oth | l. or C.<br>posite<br>[a]; F(<br>la] | alc.<br>: mol.<br>ound<br>es) |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Reaction "; Time; Yield <sup>1</sup> | brackets, with ref. superscript)                                   | compn. or<br>fraction           | с<br>С                             | Н                                    | z                             | Formula                                                       | Name ° (if '' new '' compound)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $ \begin{array}{cccc} \mbox{(2)} & 200 & 50 & 50 & 50 & 50 & 50 & 50 & 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t + Pr <sup>n</sup> I; 7 days; 55%   | I <sup>-</sup> fract. ex AcMe-Et <sub>2</sub> O:•<br>(1) 197       | Pure III(c)                     | 61.5<br>51.5                       | 7.8                                  | 3.9                           |                                                               | N_other N Anches Count hid in inw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      | (2) 210                                                            | Pure III(d)                     | 6-02                               | 0 0<br>0 0                           | 3.5                           | V151130111                                                    | iodides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      | riciates ex EtOn:<br>118                                           | Pure III(c)                     | 55.6                               | 7.2                                  | 12.2                          | ON H J                                                        | W office M buckey buck the design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | 121                                                                | Pure III(d)                     | 55·6                               | 1:1                                  | 12.2                          | 0211132N4 07                                                  | IN-congression propy and manual pricesson pricesson pricesson pricesson processon processo |
| Pictate at EtOHPure III(d)ivatives of 2-methylpyrrolidine:120ic + EtI; minutes $\Gamma$ fact. at EtOH-Et_O: $\Gamma$ if sat. at EtOH-Et_O:Mixt. mainly $T$ if sat. at EtOH: $\Gamma$ if sat. at EtOH: $\Gamma$ if sat. at EtOH:Possibly pure $T$ if sat. at EtOH:Possibly pure $T$ if sat. at EtOH:Possibly pure $T$ if sat. at Coh-Et_O:Pure IV(b) $T$ if sat. at Cohe-Et_O:Pure IV(b) $T$ if sat. at Cohe.Et_O:Pure IV(b) $T$ if sat. $T$ if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $r^{n} + EtI$ ; 48 hr.; 55%          | <pre>I<sup>-</sup> fract. ex AcMe-Et<sub>2</sub>O: e (1) 210</pre> | Pure III(d)                     |                                    |                                      |                               |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ivatives of 2-methylpyrrolidine:<br>ie + Eti; minutes I-fract. $a^{x}$ EtOH-Et <sub>4</sub> O:<br>Picate $a^{x}$ EtOH:<br>1, 320<br>1, 320<br>1, 320<br>1, 320<br>1, 320<br>1, 1200<br>1, 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      | Picrate <i>ex</i> EtOH<br>120                                      | Pure III(d)                     |                                    |                                      |                               |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ivatives of 2-methylpyrrolid         | line:                                                              |                                 |                                    |                                      |                               |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Pictate $ex$ EtOH:       Deschipty pure       47.3       5.6       15.7       C <sub>4</sub> H <sub>30</sub> N <sub>1</sub> O <sub>1</sub> 294       I'V(a)       37.6       7.1       5.6       15.7       C <sub>4</sub> H <sub>30</sub> N <sub>1</sub> O <sub>1</sub> (1)       326       Mixt. mainly       37.6       7.1       5.6       15.7       C <sub>4</sub> H <sub>30</sub> N <sub>1</sub> O <sub>1</sub> (2)       316       Mixt. mainly       37.6       7.1       5.6       15.7       C <sub>4</sub> H <sub>30</sub> N <sub>1</sub> O <sub>1</sub> (2)       316       Mixt. mainly       37.6       7.1       5.5       C <sub>6</sub> H <sub>31</sub> N       1 <i>ethyl</i> -1,2 <i>dimethylpyrolidiniu</i> 294       V(a)       Pure IV(b)       47.2       5.6       15.7       C <sub>4</sub> H <sub>30</sub> N <sub>4</sub> O <sub>1</sub> 10       178       Bit       Possibly pure       47.2       5.6       15.7       C <sub>4</sub> H <sub>30</sub> N <sub>4</sub> O <sub>1</sub> 294       IV(a)       Pure IV(b)       47.2       5.6       15.7       C <sub>4</sub> H <sub>30</sub> N <sub>4</sub> O <sub>1</sub> 10       178       Bit       7.3       5.1       5.7       C <sub>4</sub> H <sub>30</sub> N <sub>4</sub> O <sub>1</sub> 11       178       Possibly pure       IV(a)       40.4       7.3       5.1       5.4         11       (1)       178       (0.1       7.4       5.5       5       5       5     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e + EtI; minutes                     | I - fract. ex EtOH-Et <sub>2</sub> O:<br>(1) 320                   | Mixt. mainly<br>IV(a)           | 37.6<br>37.6                       | 7:4<br>7:1                           | 5.5<br>5.5                    | C.H.,IN                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      | Picrate ex EtOH:                                                   |                                 |                                    | •                                    | 5                             |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      | 294                                                                | Possibly pure<br>IV(a)          | 47·3<br>47·2                       | 5.6<br>5.6                           | 15.7<br>15.7                  | C <sub>14</sub> H <sub>20</sub> N <sub>4</sub> O <sub>7</sub> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t + MeI; seconds                     | <pre>I- fract. ex AcMe; AcMe-Et<sub>2</sub>O:<br/>(1) 326</pre>    | Pure IV(b)                      | 37.5                               | 7.1                                  | 5.6                           |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Picrates $e_A$ EtOH:       Picrates $e_A$ EtOH:       Picrates $e_A$ EtOH:       Picrates $e_A$ EtOH:       Pure IV(b) $47.3$ $5.6$ $15.7$ $1-eHyl-1,2-dimethylpyrolidium$ $294$ $294$ Possibly pure       Possibly pure $17.3$ $5.6$ $15.7$ $1-eHyl-1,2-dimethylpyrolidium$ $294$ Possibly pure       Possibly pure $17.3$ $5.1$ $1-eHyl-1,2-dimethylpyrolidium$ $(1)$ 178       Possibly pure $40.4$ $7.3$ $5.1$ $picrate$ $(1)$ 178       Mixt. mainly $40.4$ $7.3$ $5.1$ $picrate$ $(2)$ 206       IfV(b) $40.1$ $7.4$ $5.2$ $5.4H_{20}IN$ Picrates $e_A$ EtOH:       IfV(b) $40.2$ $7.2$ $5.1$ $5.2$ $5.4H_{20}IN$ Picrates $e_A$ EtOH:       Possibly pure $48.6$ $5.9$ $15.1$ $5.1H_{20}N_0$ Is       Picrates $e_A$ EtOH:       Possibly pure $48.4$ $5.9$ $15.1$ $5.1H_{20}N_0$ Picrates $e_A$ EtOH:       Picrates $e_A$ EtOH:       Picrates $e_A$ EtOH: $Picrates e_A$ $Picrates e_A PicPicrates e_A PicPicrates e_A Picrates e_A Pic$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      | (2) 316                                                            | Mixt. mainly                    | 37.6                               | 1.7                                  | <b>5.</b> 2                   | C <sub>8</sub> H <sub>18</sub> IN                             | 1-ethyl-1,2-aımethylpyrrolıaınıum<br>iodide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      | Picrates <i>ex</i> EtOH:                                           |                                 |                                    |                                      |                               |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      | 284                                                                | Pure IV(b)                      | 47:3<br>47:2                       | 5.6<br>5.6                           | 15.7<br>15.7                  | C.,H.,N,O,                                                    | 1-ethyl-1,2-dimethylpyrrolidium<br>picrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| e + Pr <sup>a</sup> I; 6 hr. I - fract. $e_x$ EtOH; EtOH-Et <sub>2</sub> O:<br>(1) 178 Mixt. mainly 40.4 7.3 5.1 Mixt. mainly 40.2 7.2 5.1 N(t))<br>(2) 206 Mixt. mainly 40.2 7.2 5.1 N(t)<br>Picrates $e_x$ EtOH: Possibly pure 48.8 6.2 15.3 Idented and 17(a)<br>148 TY(a) Adviser 48.8 6.2 15.3 Idented and 186 Possibly pure 48.4 5.8 14.9 C <sub>16</sub> H <sub>22</sub> N <sub>6</sub> O <sub>7</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      | 294                                                                | Possibly pure<br>IV(a)          |                                    | 1                                    |                               |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $(v_1)$ $(v_1)$ $(v_1)$ $(v_1)$ $(v_1)$ $(v_1)$ $(v_1)$ $(v_1)$ $(v_2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e + Pr <sup>a</sup> I; 6 hr.         | I- fract. ex EtOH; EtOH-Et <sub>a</sub> O:<br>(1) 178              | Mixt. mainly                    | 40.4                               | 7.3                                  | 5.1                           |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (2) 206 MIXT. mainly 40.2 7.2 5.1<br>Picrates $e_{x}$ EtOH: IV(a) IV(a)<br>148 TV(b) 48.6 5.9 15.1<br>186 Possibly pure 48.4 5.8 14.9<br>186 TV(a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      |                                                                    | IV(b)                           | 40.1                               | 7.4                                  | 5.5                           | C <sub>9</sub> H <sub>20</sub> IN                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Picrates $ex$ EtOH:       Possibly pure       48.8       6.2       15.3         148       IV(b)       48.6       5.9       15.1 $C_{16}H_{21}N_6O_7$ 186       Possibly pure       48.4       5.8       14.9 $IN(b)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      | (2) 206                                                            | Mixt. mainly<br>IV(a)           | 40-2                               | 7.2                                  | 5.1                           |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $1V(v) = \frac{1}{48\cdot4} = \frac{1}{5\cdot8} = \frac{1}{2\cdot5} = \frac{1}{2\cdot$ |                                      | Picrates ex EtOH:<br>148                                           | Possibly pure                   | 48.8                               | 6.5                                  | 15.3                          |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | 186                                                                | IV(D)<br>Possibly pure<br>IV(a) | 48·0<br>48·4                       | 0.0<br>0.0                           | 10.1<br>14-9                  | U16H224U2                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

TABLE 4 (Continued)

|                  |       | rmula Name <sup>e</sup> (if " new " compound)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                   |                       |                          |                                       | 21                                               | 2011                                           | 22 <sup>N4</sup> 07<br>1-benzyl-1,2-dimethylpyrrol-<br>idinium hicrate | 1-benzyl-1, 2-dimethylpyrrol-                                      | ananga unununu NT105    | 117                                         | 25.1.LV                                                                                       | <sup>2</sup> 4N4O7 |                                                        |                                         |
|------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------|--------------------------|---------------------------------------|--------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------|-----------------------------------------|
|                  | sis   | 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   |                       |                          |                                       | ۲<br>ر                                           |                                                | ביי                                                                    |                                                                    |                         |                                             |                                                                                               | C <sub>16</sub> H  |                                                        |                                         |
|                  | Analy | Calc.<br>te mol.<br>Found<br>nes)<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                   |                       |                          |                                       | 4.6                                              | 13.5                                           | 13·4<br>13·6                                                           | 4.4<br>•                                                           | <b>#</b><br>#           |                                             |                                                                                               | 14·5<br>14·6       |                                                        | 14.6                                    |
|                  |       | Id. or<br>opposition<br>ula); ]<br>ther li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                   |                       |                          |                                       | 6.2                                              | 5. 4.<br>4.0                                   | 5.4<br>5.4                                                             | 9.9                                                                | <b>?</b> .0             | L.T.                                        | 0                                                                                             | $6.2 \\ 6.2$       |                                                        | 6.4                                     |
| ed)              |       | C C (line of the |                                                                   |                       | y                        |                                       | 49.4                                             | 54.7                                           | 04-0<br>54-7                                                           | 49.2                                                               | 7.67                    | 42.0                                        | 4.24                                                                                          | 49-7<br>50-0       |                                                        | 49-9                                    |
| . Е. 4. (Continu |       | Structure or<br>compn. of<br>fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mixt. mainly<br>rv/h)                                             | Mixt. mainly<br>IV(a) | Possibly nearl           | pure 1 V(b)<br>Possibly pure<br>IV(a) | Mixt.                                            | Possibly pure                                  | IV(a)<br>Pure IV(b)                                                    | Pure IV(b)                                                         | Pure IV(b)              |                                             | Mixt.                                                                                         | Mixt.              | Mixt.                                                  | Mixt.                                   |
| TABI             |       | Salt fractions <sup>5</sup><br>Anion; solvents for fractn. or<br>recryst, m. p. (ref. m. p. in<br>brackets, with ref. superscript)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I <sup>-</sup> fract. ex EtOH; EtOH-Et <sub>2</sub> O:<br>(1) 180 | (2) 190               | Picrates ex EtOH:<br>144 | 186                                   | I - fract. ex EtOH-Et <sub>2</sub> O:<br>(1) 152 | <pre>Picrate fract. ex EtOH:<br/>(1) 152</pre> | (2) 118                                                                | I <sup>-</sup> fract. <i>ex</i> AcMe-Et <sub>2</sub> O:<br>(1) 126 | Picrate ex EtOH:<br>118 | I - fract. $\varepsilon x$ AcMe:<br>(1) 266 | $ \begin{array}{c} (2) & 260 \\ (3) & 220 \\ \text{Picrates } ex \text{ EtOH} : \end{array} $ | $158$ $162$ $\}$   | I - fract. $ex$ AcMe:<br>(1) 266<br>(2) 256<br>(2) 256 | (3) 222 J<br>Picrates ex EtOH:<br>160 } |
|                  |       | Reaction "; Time; Yield <sup>j</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | >NPr <sup>a</sup> + MeI; minutes                                  |                       |                          |                                       | > NMe + Ph·CH <sub>2</sub> ·I; minutes           |                                                |                                                                        | >NCH2Ph + MeI; minutes                                             |                         | >NEt + Pr <sup>u</sup> I; 48 hr.; 75%       |                                                                                               |                    | >NPra + EtI; 24 hr.                                    |                                         |

|                                                          | TABI                                                                                                                                        | LE 4 (Continue                        | ed)                                     |                                          |                            |                      |                                         |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|------------------------------------------|----------------------------|----------------------|-----------------------------------------|
|                                                          |                                                                                                                                             |                                       |                                         | 7                                        | Analysi                    | S                    |                                         |
| Reaction "; Time; Yield                                  | Salt fractions <sup>b</sup><br>Anion: solvents for fractn. or<br>recryst. m. p. (ref. m. p. in<br>brackets, with ref. superscript)          | Structure or<br>compn. of<br>fraction | Reqd<br>(line op<br>formul<br>(oth<br>C | L or C<br>posite<br>(a); F<br>a); H<br>H | alc.<br>; mol.<br>es)<br>N | Formula              | Name <sup>e</sup> (if " new " compound) |
| Derivatives of 2-methylpiperidine<br>>NMe + EtI; minutes | <ul> <li>P: fract. ex EtOH-Et<sub>2</sub>O:</li> <li>(1) 320</li> <li>Picrates fract. ex EtOH:</li> <li>(1) 272</li> <li>(2) 264</li> </ul> | Mixt.<br>Mixt.<br>Mixt.               | 48.9<br>1 9.6                           | 6.1<br>7.0                               | 1                          | с<br>х<br>ц          |                                         |
| >NEt + MeI; 1 min.                                       | I - fract. ex EtOH-Et2O:<br>(1) 318                                                                                                         | Mixt.                                 | 39-7                                    | 4.1                                      | 46-91<br>47-9              | C.H. IN              |                                         |
|                                                          | Picrates fract. ex EtOH:<br>(1) 264<br>(2) 256                                                                                              | Mixt.<br>Mixt.                        |                                         | -                                        | 1                          |                      |                                         |
| >NMe + Pr <sup>a</sup> I; 24 hr.                         | I - fract. $ex$ AcMe:<br>(1) 220<br>Discretes fract $ex$ FIOH.                                                                              | Mixt.                                 |                                         |                                          |                            |                      |                                         |
|                                                          | (1) 200                                                                                                                                     | Mixt.                                 | 49.7<br>70.0                            | 6·1<br>6·9                               | 14-2<br>14-6               | ON H J               |                                         |
|                                                          | (2) 134                                                                                                                                     | Mixt.                                 | 0.00                                    | 1                                        |                            | 10Fv=1517910         |                                         |
| >NPr <sup>a</sup> + MeI; minutes                         | I - fract. $ex$ AcMe:<br>(1) 220                                                                                                            | Mixt.                                 | 42.6<br>4 <b>2</b> .4                   | 8·1<br>7·8                               | 5.1<br>4.9                 | C <sub>10</sub> H"IN |                                         |
|                                                          | Picrates fract. $ex$ EtOH:<br>(1) 157                                                                                                       | Mixt.                                 | 50.0                                    | 6.5                                      | 14.6                       |                      |                                         |
|                                                          | (2) 126                                                                                                                                     | Mixt.                                 | 50-1<br>50-1                            | 0.2<br>0.2                               | 14.0<br>14.2               | V16H24N4U7           |                                         |
| >NMe + Ph·CH <sub>2</sub> I; minutes                     | I - fract. <i>ex</i> EtOH-Et <sub>2</sub> O:<br>(1) 168                                                                                     | Mixt.                                 | 50-5<br>50-8                            | 6.6<br>6.6                               | 38.61<br>38.4              | CHIN                 |                                         |
|                                                          | Picrates fract. ex EtOH:<br>(1) 126                                                                                                         | Possibly pure                         | 5 <b>5</b> .5                           | - 101<br>- 101                           | 13.1                       |                      |                                         |
|                                                          | (2) 156                                                                                                                                     | V (b)<br>Possibly pure<br>V(a)        | 55-2                                    | 5.6                                      | 13.0                       | C20H24N4O7           |                                         |
| >N·CH <sub>2</sub> Ph + MeI: seconds                     | I - fract. <i>ex</i> EtOHEt <sub>2</sub> O:<br>(1) 172                                                                                      | Mixt.                                 | 50.9                                    | 6.9                                      | 4.4                        |                      |                                         |
|                                                          | (2) 164                                                                                                                                     | Mixt.                                 | <b>8.</b> 00                            | 0.0                                      | 7.7                        |                      |                                         |

|                                                                           | TABI                                                                                                                               | CE 4 (Continue)                            | <b>(</b>                             |                                             |                 |                                                               |                                                    |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------|---------------------------------------------|-----------------|---------------------------------------------------------------|----------------------------------------------------|
|                                                                           |                                                                                                                                    |                                            |                                      | ¥                                           | nalysi          |                                                               |                                                    |
| Reaction "; Time; Yield <sup>1</sup>                                      | Salt fractions <sup>b</sup><br>Anion; solvents for fractn. or<br>recryst. m. p. (ref. m. p. in<br>brackets, with ref. superscript) | )<br>Structure or<br>compn. of<br>fraction | Reqd.<br>line opj<br>formula<br>(oth | or Ca<br>posite<br>(1); Fo<br>er lines<br>H | lc.<br>und<br>N | Formula                                                       | Name ° (if " new " compound)                       |
| >N•CH <sub>2</sub> Ph + MeI: seconds                                      | Picrates fract. ex EtOH<br>(1) 126                                                                                                 | Possibly pure<br>V(b)                      |                                      |                                             |                 |                                                               |                                                    |
|                                                                           | (2) 156                                                                                                                            | Possibly pure<br>V(a)                      |                                      |                                             |                 |                                                               |                                                    |
| Derivatives of 4-phenylpiperidin<br>>NMe + EtI; 2 hr.                     | ue:<br>I- fract. ex AcMe:<br>(1) 168 (170; 181) 2.0                                                                                | Nearly pure                                |                                      |                                             |                 |                                                               |                                                    |
|                                                                           | (2) 140 (140; 146) $^{2,h}$                                                                                                        | VI(a)<br>Possibly mainly<br>VI(b)          |                                      |                                             |                 |                                                               |                                                    |
|                                                                           | Picrate <i>ex</i> EtOH:<br>124                                                                                                     | Nearly pure                                |                                      |                                             | 13.1            |                                                               |                                                    |
|                                                                           |                                                                                                                                    | v 1(a)<br>Possibly mainly<br>VI(b)         |                                      |                                             | 13.5            | 02011 24 14 07                                                |                                                    |
| >NEt + MeI; minutes                                                       | I- fract. <i>ex</i> AcMe:<br>(1) 142 (140; 146) <sup>2.A</sup><br>(2) Oily residues                                                | Pure VI(b)                                 |                                      |                                             |                 |                                                               |                                                    |
|                                                                           | Picrate ex EtOH:<br>131                                                                                                            | Pure VI(b)                                 | 55.2<br>55.2                         | ອ. ອ.<br>ອ. ອ.                              | 13·2<br>13·0    | C <sub>20</sub> H <sub>24</sub> N <sub>4</sub> O,             | 1-ethyl-1-methyl-4-phenyl-<br>piperidinium picrate |
| Derivatives of <i>trans</i> -decahydroq<br>>NMe + EtI; 1 hr. <sup>4</sup> | uinoline:<br>I- fract. ex AcMe:<br>(1) 201                                                                                         | Mixt.                                      | 46.8<br>46.6                         | 7.7                                         | 4.3<br>7.5      | NL.H.D                                                        |                                                    |
|                                                                           | <pre>Picrolonate fract. ex EtOH:<br/>(1) 112—150 range</pre>                                                                       | Mixt.                                      | 58.8                                 |                                             | 15.6            | CHO.                                                          |                                                    |
|                                                                           | Perchlorate fract. ex EtOH:<br>(1) 148<br>(2) 142                                                                                  | Possibly pure<br>VII(b)<br>Mixt.           | 51.4<br>51.2                         | ດ້ອງ ເອັ                                    |                 | C <sub>12</sub> H <sub>24</sub> NClO <sub>4</sub>             |                                                    |
| >NEt + MeI; ininutes <sup>4</sup>                                         | I - fract. ex AcMe:<br>(1) 191                                                                                                     | Mixt.                                      | 46-8<br>46-6                         | 7.8<br>7.8                                  | 4<br>5<br>5     | C <sub>12</sub> H <sub>24</sub> IN                            |                                                    |
|                                                                           | Picrate fract. ex EtOH:<br>(1) 94—105 range                                                                                        | Mixt.                                      | 52.8<br>52.7                         | 6.5<br>6.4                                  | 13·8<br>13·7    | C <sub>18</sub> H <sub>26</sub> N <sub>4</sub> O <sub>7</sub> |                                                    |

**I** • •

|                                                              |                                                                                                     |                                        |                  | 4               | nalysi        | <i>i</i> 0                                                    |                                |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------|------------------|-----------------|---------------|---------------------------------------------------------------|--------------------------------|
|                                                              | Salt fractions <sup>b</sup>                                                                         |                                        | Reqd<br>(line op | or Cc<br>posite | mol.          |                                                               |                                |
| Reaction "; Time; Yield <sup>J</sup>                         | Anion; solvents for fractn. or<br>recryst. m. p. (ref. m. p. in<br>brackets, with ref. superscript) | Structure or<br>compn. of<br>fraction  | oth<br>C         | er line<br>H    | N (s          | Formula                                                       | Name ° (if '' new '' compound) |
| >NEt + MeI; minutes <sup>i</sup>                             | Picrolonate fract. ex EtOH:<br>(1) 108—120° range                                                   | Mixt.                                  | 59-3<br>59-3     | 7.3             | 15-9<br>15-7  | CHO.                                                          |                                |
|                                                              | Perchlorate fract. ex AcMe-Et <sub>2</sub> O:<br>(1) 148                                            | Possibly pure                          | )<br>)           | •               |               | C                                                             |                                |
|                                                              | (2) 136-138                                                                                         | V II (U)<br>Mixt.                      |                  |                 |               |                                                               |                                |
| >NMe + Pr¤I '; 2 hr.                                         | I- fract. ex AcMe:<br>(1) 199                                                                       | Mixt.                                  | 48·2<br>48·3     | 8.2<br>8.1      | 4·1<br>4·4    | CHIN                                                          |                                |
|                                                              | Picrate fract. ex EtOH:<br>91—108 range                                                             | Mixt.                                  | 53.7             | . 8.9<br>8.9    | 12.8          |                                                               |                                |
|                                                              | Picrolonate fract. ex EtOH:<br>138—160 range                                                        | Mixt.                                  | 59.7<br>60.1     | 7.2             | 15.5<br>15.3  | C19112811407<br>C23H33N5O5                                    |                                |
| >NPr <sup>n</sup> + MeI; 2 hr.                               | I - fract. <i>ex</i> AcMe:<br>(1) 194                                                               | Mixt.                                  | 48.4<br>48.4     | 8.1<br>8.1      | 4.4<br>4.4    | U H U                                                         |                                |
|                                                              | Picrate fract. ex EtOH:                                                                             |                                        |                  |                 | H C           | 0131126111                                                    |                                |
|                                                              | (1) 92—104 range                                                                                    | Mixt.                                  | 53-5<br>53-8     | 6.6<br>6.6      | 13.6<br>13.2  | C <sub>19</sub> H <sub>28</sub> N4O7                          |                                |
|                                                              | Picrolonate fract. ex EtOH:<br>(1) 150160 range                                                     | Mixt.                                  | 60-0<br>60-1     | 7.4<br>7.2      | 14.9<br>15.3  | C <sub>28</sub> H <sub>33</sub> N <sub>5</sub> O5             |                                |
| >NMe + PhCH <sub>2</sub> I; min.                             | Picrate $\varepsilon x$ aq. EtOH:<br>(1) 113—115                                                    | Mixt.                                  |                  |                 |               |                                                               |                                |
| >N•CH <sub>2</sub> Ph + MeI; min.<br>Derivatives of Tronane: | Picrate ex aq. EtOH:<br>(1) 135—138                                                                 | Mixt.                                  |                  |                 |               |                                                               |                                |
| >NMe + EtI; minutes                                          | I- mixture, not recryst. 359—361                                                                    | Mixt.                                  | 42·2<br>42·7     | 0·2             | 45·11<br>45·2 | C.,H,,IN                                                      |                                |
|                                                              | Picrates fract. ex EtOH:<br>(1) 334                                                                 | Possibly pure<br>II (R = Me;           |                  |                 | 14·5<br>14·7  | C <sub>16</sub> H <sub>32</sub> N <sub>4</sub> O <sub>7</sub> |                                |
|                                                              | (2) 310                                                                                             | $\mathbf{R}' = \mathbf{Et}$ )<br>Mixt. |                  |                 |               |                                                               |                                |

TABLE 4 (Continued)



Yields essentially theoretical unless otherwise stated

24 McKenna, McKenna, Tulley, and White: Stereoisomeric

1724

and the primary alkylamines. Commercial samples of 2-methylpiperidine and *trans*-decahydroquinoline were converted into N-methyl derivatives by the Clarke–Gillespie process <sup>13</sup> and into other N-alkyl derivatives by reduction of the corresponding N-acyl-amines with lithium aluminium hydride in ether. The 4-phenylpiperidines were synthesised *via* the related 1,2,3,6tetrahydropyridines by a described procedure.<sup>14</sup> Tropane obtained (80%) by the modified <sup>15</sup> Wolff–Kishner reduction of commercial tropinone was (2 g.) oxidised in water (20 c.c.) containing potassium hydroxide (2·3 g.) with potassium permanganate (7 g.) added during 1 hr. with ice-cooling. After a further 12 hr. at room temperature the crude nortropane was isolated and acetylated, and the N-acetyl derivative was reduced with lithium aluminium hydride in ether. The resultant N-ethylnortropane was shown to be almost free from tropane by g.l.c. analysis, and was finally purified *via* the picrate.

Physical properties and analytical data for the bases, their derivatives, and some synthetical intermediates are given in Table 3.

Preparation and Fractionation of Quaternary Salts.—Quaternary iodides (or mixtures of stereoisomeric iodides) were prepared by treatment of the base with a large excess of the alkyl halide in an equal volume of acetone in presence of finely ground anhydrous potassium carbonate (this was omitted in the tropane quaternisations, where the insolubility of the quaternary salts in organic solvents made their separation from the carbonate difficult). The crude quaternary iodides were extracted with chloroform and fractionated to give the results indicated in Table 4.

Quaternary picrates, picrolonates, and perchlorates were made by appropriate "double decomposition" from the iodides in aqueous solution, in critical cases with stoicheiometric quantities of reagents in the minimum of solvent. Quaternary iodide mixtures in the tropane system were insufficiently soluble for convenient n.m.r. examination, and were accordingly converted in hot aqueous solution into the corresponding chloride mixtures by treatment with silver chloride.

The simple indication "mixt." is given in Table 4 when no reliable information about the composition of a fraction is available from n.m.r. spectroscopy or otherwise, but there is obvious evidence of heterogeneity from attempts at fractional crystallisation. Statements about composition of other salt fractions are made on consideration of fractionation evidence and n.m.r. spectra which were run on pure recrystallised iodides of the camphidine series, nearly pure recrystallised iodides of the 4-phenylpiperidine series, recrystallised but (usually) heterogeneous iodides with some salts of the 2-methylpyrrolidine series, and total crude iodides (chlorides in the tropane system) in other cases.

We thank the D.S.I.R. for maintenance grants (to J. W. and A. T.) and the University of Sheffield for research facilities (to J. M. McK.).

DEPARTMENT OF CHEMISTRY, THE UNIVERSITY, SHEFFIELD 10. [Received, June 30th, 1964.]

<sup>15</sup> Huang-Minlon, J. Amer. Chem. Soc., 1949, 71, 3301.

<sup>&</sup>lt;sup>13</sup> Clarke, Gillespie, and Weisshaus, J. Amer. Chem. Soc., 1933, 55, 4571.

<sup>&</sup>lt;sup>14</sup> Schmidle and Mansfield, J. Amer. Chem. Soc., 1956, 78, 425, 1702.