320. Stereoisomeric Pairs of Cyclic Quaternary Ammonium Salts. Part I. ${ }^{1} \quad$ Stereospecificity in Quaternisations of N -Alkylcamphidines, 2-Methylpyrrolidines, 2-Methyl- and 4-Phenylpiperidines, trans-Decahydroquinolines, and Tropanes, and Configurations of the Diastereoisomeric Salts

By James McKenna, Jean M. McKenna, A. Tulley, and J. White
Quaternisation of N-alkyl derivatives of the bases named in the title is usually stereoselective, an axial approach of quaternising agent being apparently preferred for all the six-ring heterocycles except tropane, and an analogous approach cis to the 2 -methyl group with tertiary 2 -methylpyrrolidines. With tropanes, as in the tropines, the preferred approach is equatorial.

Introduction.-The aims of the work initiated by that reported in this group of four Papers are (a) an investigation of the degree of stereoselectivity exhibited in quaternisations of reduced cyclic N-alkyl tertiary bases with an alkylating agent containing an alkyl group different from that already attached to nitrogen, (b) the determination of configuration of the resultant quaternary salts, and (c) a study of their differential reactivity in elimination, substitution, and other reactions. An investigation, particularly of the first aspect (and a statement regarding the second), with a series of representative mono- and bi-cyclic bases is reported in the present Paper, while Parts II and III deal respectively with one important method (nuclear magnetic resonance spectroscopy) employed for determination of configuration of the diastereoisomeric quaternary salts and with aspects of differential reactivity for some of the stereoisomers. A general theoretical discussion is given in Part IV. Methods other than the n.m.r. procedure for determining configuration of the isomeric salts are described in this Paper (empirical infrared spectroscopy) and in Part IV (equilibration of methyl-benzyl isomeric pairs; consideration of type of stereoselectivity exhibited).

Previous Work.-Isolated examples of stereoselectivity in the quaternisation of cyclic N -alkyl-bases have been from time to time reported by several authors who have examined the process for, e.g., 4 -phenylpiperidines ${ }^{2}$ and norcodeines. ${ }^{3}$ The most extensive work,

[^0]however, has been carried out in the tropine system chiefly by Fodor and his collaborators, ${ }^{4}$ with some contributions from other authors. ${ }^{5}$ Fodor found that when N-alkylnortropines (hydroxylated derivatives of the tropanes $\mathrm{I} ; \mathrm{R}=\mathrm{Me}, \mathrm{Et}, \mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{Et}$, etc.) were quaternised with the halide $\mathrm{R}^{1} \mathrm{X}$, the reaction led to a product (II), isomeric with that obtained when the groups R, R^{1} were introduced in the reverse sequence. Mixtures were obtained in analogous work with oscines, which carry an oxide bridge between the asterisked carbon atoms, but Fodor and his collaborators regarded the quaternisations of tropines as being stereospecific (i.e., yielding in each reaction only one product) rather than merely stereoselective. The work of Closs ${ }^{6}$ on the N-ethyl- N-methylpseudotropinium salts, and our own, reported below, on analogous salts derived from the parent base tropane makes this seem unlikely: quaternisations of all tropines are probably highly stereoselective, but minority proportions of diastereoisomeric quaternary salts in reaction mixtures are often revealed only by n.m.r. spectroscopy. In our own work with salts derived from 2 -methylpyrrolidine we have found that samples of constant m. p. and i.r. spectrum from recrystallisation of quaternisation mixtures may be shown by n.m.r. analysis to contain two stereoisomers, each in substantial proportion. These points, and many similar in the literature-e.g., the uncertainties in the characterisation of isomeric N-ethyl- N-methyltropinium iodides, $4 a, 5 a, b$ and probably also the recent work of Trojánek et al. ${ }^{7}$ in the camphidine field (discussed further below)-emphasize the commonest experimental pitfall facing workers in this field. (A common theoretical error in interpretation of the steric course of quaternisations of cyclic N-alkyl-bases is discussed in Part IV). We may note finally here the interesting series of isomeric N-methylquinolizidinium salts prepared and studied by Katritzky, Schofield, and their collaborators; 8 in these compounds, however, unlike those examined by ourselves, formal interconversion between diastereoisomers is associated with a cis-trans-change in ring fusion.

Stereoselectivity of Quaternisations.-Little comment is required on the preparation of the tertiary amines (N-alkyl derivatives of the bases named in the title) described in the Experimental section; the oxidative N-demethylation of tropane, modelled on a similar process recorded for analogous bicyclic bases, ${ }^{9}$ worked surprisingly well, and rendered unnecessary investigation of more specific processes. With all six systems, we examined reaction mixtures obtained by methylating the N-ethyl- and ethylating the N-methylbases; in addition, for four of the systems (camphidine, 2 -methylpyrrolidine, 2 -methylpiperidine, and trans-decahydroquinoline) we obtained a more complete picture of stereoselectivity by using a wider range of N-alkyl groups (see Table 1). Quaternisations were carried out in acetone at room temperatures taking from a few minutes to a few hours for effective completion, and some reactions were also performed in refluxing acetone. The camphidines were refluxed, usually for longer periods, with the alkyl iodide in the same solvent. Except in alkylations with the tropanes, where it was omitted for manipulative reasons, anhydrous potassium carbonate was used in the quaternisations to prevent possible competitive formation of base hydriodides.*

Where mixtures of camphidinium quaternary iodides were obtained from quaternisations the components were readily separated by fractional crystallisation, and shown to be

[^1]Table 1
Degree of stereoselectivity of quaternisations in acetone

${ }^{a}$ Reflux temperatures: except with camphidines, hot solutions of base and quaternising agent initially mixed. ${ }^{b}$ Room temperature.
homogeneous by i.r. and especially n.m.r. spectroscopy. Quaternary iodides derived from 2-methylpyrrolidines were partially separated by fractional crystallisation, but the apparently pure specimens were usually shown to be heterogeneous by n.m.r. spectroscopy; isomer proportions in the reaction mixtures were therefore derived from a combination of data. Nearly pure specimens of the isomeric l-ethyl-1-methyl-4-phenylpiperidinium salts were obtained by fractional crystallisation, in agreement with the observations of Mills and his collaborators, ${ }^{2}$ but with derivatives of other base systems total crude quaternisation mixtures were examined by n.m.r. spectroscopy to get an approximate indication of isomer proportions, and in most such cases a measure of supporting evidence was derived from fractional crystallisation (see Table 4). Attempted separation of one pair of " methylethyl" diastereoisomeric iodides (derived from trans-decahydroquinoline) by paper chromatography in a butanol-water system failed, although it was possible to separate homologous salts by this method.

For presentation of an overall picture of degree of stereoselectivity in these quaternisations we believe that a symbolism like that adopted in Table 1 is preferable to quotation of percentages or fractional yields, since the quaternisations were carried out under preparative rather than closely controlled kinetic conditions, and analytical techniques have not been refined to give high accuracy; moreover, use of a limited number of symbols emphasizes qualitative similarities between degrees of stereoselectivity found in the quaternisations in the different systems. The data in Table 1 are much more developed than those presented in the corresponding Table in our preliminary communication; ${ }^{10}$ the chief differences are that (a) we have modified our interpretation of the steric course of some of the quaternisations of 2-methylpiperidines, for reasons stated in the following Paper (Part II), (b) the symbol +++ is now used only where there is no available evidence of any kind that more than one isomer is produced, i.e., reactions thus symbolised are stereospecific or virtually so under the reaction conditions employed, and (c) a wider range of quaternisations has now been studied.

It is noteworthy that although mixtures containing approximately equal proportions of isomers were obtained in a few reactions, in no case was the strongly predominant product of one quaternisation also that of the reaction sequence in which the alkyl groups were inserted in the reverse order.

Configurations of Diastereoisomeric Quaternary Ammonium Salts.-One important method, n.m.r. spectroscopy (see Part II), is applicable only when a spectroscopic relationship can be established between the N-methyl hydrochloride (to which a preferred configuration must be assigned) and the related quaternary salts. There is no difficulty in writing down the preferred configuration of any of the N-methyl hydrochlorides, since a methyl group is obviously more space-demanding than hydrogen, and relative compressions in the two bonding spaces around each nitrogen atom in the range of bases studied are readily assignable except perhaps in the case of tropane.* Where the relevant spectroscopic relationship cannot be established the n.m.r. method is inapplicable; this was the case with derivatives of 4-phenylpiperidine and trans-decahydroquinoline. The close similarity between n.m.r. curves of corresponding derivatives of trans-decahydroquinoline and 2-methylpiperidine, however (see Part II) is probably due to analogous configurations in analogous salts derived from each base system-in both cases a 2-alkylpiperidine.

A subsidiary criterion for configurational assignments with the quaternary salts is

[^2]based on i.r. spectroscopy. Zeile and Schulz ${ }^{5 b}$ found characteristic differences between epimeric pairs in the tropine field in, inter alia, the $850-900 \mathrm{~cm} .^{-1}$ region, and differences in the same region with camphidine quaternary salts were noted by Trojánek et al. A general

Table 2

Base system	Isomeric salts	Bands (cm. ${ }^{-1}$)
Camphidine	$>\mathrm{NMeEt}$	878, 898
	$>\mathrm{NMePr}^{\mathrm{n}}$	884, 899
	$>\mathrm{NMeCH}_{2} \mathrm{Ph}$	880, 897
2-Methylpyrrolidine	$>\mathrm{NMeEt}$	847, 898
	$>\mathrm{NMePr}^{\text {r }}$	846, 897
	$>\mathrm{NMeCH}_{2} \mathrm{Ph}$	865, 890
2-Methylpiperidine	$>\mathrm{NMeEt}$	Not sufficiently well defined
	$>\mathrm{NMePr}^{\text {n }}$, ,
	$>\mathrm{NMeCH}_{2} \mathrm{Ph}$	
4-Phenylpiperidine \qquad trans-Decahydroquinoline \qquad	$>$ NMeEt	865, 897
	$>\mathrm{NMeEt}$	Not sufficiently well defined
	$>\mathrm{NMePr}^{\text {n }}$	
	$>\mathrm{NMeCH}_{2} \mathrm{Ph}$	
Tropane	$>\mathrm{NMeEt}$	867, 889

rule, applicable to all our salts with configuration deduced by application of other methods (except those derived from 2-methylpiperidine: see below), is that in the approximate region $840-900 \mathrm{~cm} .^{-1}$ there is a diagnostic band at high ($>c a .855 \mathrm{~cm} .^{-1}$) or at lower frequency for NMe equatorial or axial respectively (or, in the case of 2-methylpyrrolidine derivatives, for NMe respectively trans or cis to CMe). Often two " diagnostic" bands (and sometimes others) are observed in one spectrum, but in such cases there is a characteristic increase in intensity of diagnostic band in the higher region ($c a .885-900 \mathrm{~cm} .^{-1}$) and/or an analogous reduction in the lower region ($c a .840-885 \mathrm{~cm} .^{-1}$) in the spectrum of the salt with eq-NMe as compared with that with $a x-\mathrm{NMe}$. If the rule is extended to cover derivatives of 4-phenylpiperidine, configurations for quaternary salts in this system may be derived. The application of this rule is less clear-cut, however, with many of the derivatives of trans-decahydroquinoline, 2-methylpiperidine, and 2-methylpyrrolidine, perhaps because of the (known) degree of sample heterogeneity in these systems, and we feel unable to quote " diagnostic" bands for the first two of these systems.

Application of these two methods and/or the other two described in Part IV shows that in the camphidine, 2 -methyl- and 4-phenyl-piperidine and trans-decahydroquinoline systems an axial approach of quaternising agent to tertiary base is preferred in reactions of marked stereoselectivity; a cis (to CMe) approach (analogous to axial in the above six-memberedring heterocycles) is preferred in quaternisations of tertiary 2 -methylpyrrolidines. In tropane, however, as in tropines, the preferred approach is equatorial.

Direct X-ray evidence on the configuration of some of the pure quaternary salts described would be of considerable value (see also Part IV) and it is hoped that this may be provided in due course. A preliminary examination ${ }^{12}$ of the N-benzylcamphidine methiodide led to evaluation of the unit cell parameters, but unfortunately these do not allow an unambiguous configurational assignment.

Work of Trojánek et al.-In a Paper published after our work in the relevant area had been completed, Trojánek et al. describe the preparation of a similar range of diastereoisomeric salts related to camphidines, derived in their work from (+)-camphorimide. The quaternisations were carried out at temperatures different from those we used (50 and 100° are quoted in two examples) and in the absence of inert solvent. Only one isomer was obtained in each quaternisation, including several reactions where we isolated both isomers. We have not specifically checked the Czechoslovakian workers' experiments (insufficient details are in any case given in most examples to allow an exact check), but in our own

[^3]earlier work we have in several reactions shown that use of methyl or ethyl alcohol in place of acetone, using refluxing acetone rather than the same solvent at room temperature (see Table 1), or dispensing with a solvent altogether made little difference to isomer ratio,

Table 3
Tertiary bases and derivatives

Compound ${ }^{\text {a }}$ a ${ }^{\text {a }}$ B.	M. p. (ref. m. p. in brackets); recryst. solvent	Analysis, Found (top line), Reqd. or Calc. (bottom line, opposite molecular formula				$\underset{\text { Mormula }}{\text { Mol }}$	Ref.
		C	H	N	Cl		
(1) Derivatives of camphidine:							
N-methyl base $91^{\circ} / 28 \mathrm{~mm}$.		78.9	12.7	$8 \cdot 1$			
N-methyl picrate	$236{ }^{\circ}$ (234) EtOH	79.0 51.5	$12 \cdot 6$ 6.2	8.4 14.2		$\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{~N}$	s
-methyl pirate	$23{ }^{\circ}$ (234) Еьон	51.5	$6 \cdot 1$	14.1		$\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{7}$	
N-methyl hydrochloride	216 (227) $\mathrm{Me}_{2} \mathrm{CO}$			6.8			
N-methyl picrolonate ...	216 EtOH	$58 \cdot 1$	6.6	6.9 16.0		$\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{NCl}$	${ }^{\text {b }}$
		58.5	6.7	16.2		$\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{5}$	
N-ethyl base 110/28 mm.		79.3 79.6	12.9	8.1			
N-ethyl picrate	178 (155) ${ }^{n}$ EtOH	79.6 52.5	12.7 6.3	7.8 13.6		$\mathrm{C}_{12} \mathrm{H}_{33} \mathrm{~N}$	7
		52.7 66.0	6.3 10.9	13.7		$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{7}$	7
N-ethyl hydrochloride ...	Sublimes 210-260 (m. p. 274) AcMe	$\begin{aligned} & 66 \cdot 0 \\ & 66.2 \end{aligned}$	10.9 11.0	6.5 6.4		$\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{NCl}$	7
N-propyl base 180-182		80.2	12.9	7.1			,
N-propyl picrate ...	168 (168) EtOH	80.0 54.1	12.8 6.9	7.2 13.7		$\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{~N}$	7
		53.8	6.6	$13 \cdot 2$		$\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{7}$	7
N -benzyl base $165 / 30 \mathrm{~mm}$.		84.1 83.9	10.3 10.3	6.1 5.8			7
N-benzyl picrate	154 (156-158)	58.2	$6 \cdot 1$	11.8			
	EtOH	58.5	6.0	11.8		$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{7}$	7
propylcamphorimide	57 petrol	$\begin{aligned} & 69 \cdot 8 \\ & 69 \cdot 9 \end{aligned}$	9.4 9.5	$6 \cdot 3$ 6.3		$\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{2}$	
(2) Derivatives of 2-methylpyrrolidine:							
N-methyl picrate	232 (234) EtOH						${ }^{\text {d }}$
N -methyl hydrochloride...	224 AcMe	$\begin{aligned} & 52 \cdot 5 \\ & 53 \cdot 1 \end{aligned}$	$\begin{aligned} & 10 \cdot 3 \\ & 10 \cdot 4 \end{aligned}$		$\begin{aligned} & 26 \cdot 1 \\ & 26 \cdot 2 \end{aligned}$	$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{NCl}$	
N-ethyl picrate	190 (194) EtOH					$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{Cl}$	e
N-n-propyl picrate	123 EtOH	$\begin{aligned} & 46 \cdot 8 \\ & 47 \cdot 2 \end{aligned}$	$\begin{aligned} & 5 \cdot 7 \cdot \\ & 5 \cdot 6 \end{aligned}$	$\begin{aligned} & 15 \cdot 3 \\ & 15 \cdot 7 \end{aligned}$		$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{7}$	
N-benzyl hydrochloride	$\underset{\mathrm{Et}_{2} \mathrm{O}}{168(173) \mathrm{AcMe}-}$						'
(3) Derivatives of 2-methylpiperidine:							
N-methyl hydrochloride	250 (259) AcMe						g
N-ethyl picrate	185 (189) EtOH	$\begin{aligned} & 47 \cdot 1 \\ & 47 \cdot 2 \end{aligned}$	$\begin{gathered} 5 \cdot 9 \\ 5 \cdot 6 \end{gathered}$	$\begin{aligned} & 15 \cdot 6 \\ & 15.7 \end{aligned}$		$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{7}$	${ }^{\text {b }}$
$\begin{aligned} & \text { N-n-propyl picrate } \\ & N \text {-benzoyl } \end{aligned}$	$\begin{aligned} & 112(113) \mathrm{EtOH} \\ & 40-42(45) \end{aligned}$					$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{7}$	${ }^{i}$
N-benzyl hydrochloride...	186-188 AcMe	$\begin{aligned} & 69 \cdot 2 \\ & 69 \cdot 2 \end{aligned}$	$\begin{aligned} & 8.8 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 6.3 \\ & 6 \cdot 2 \end{aligned}$		$\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NCl}$	
(4) Derivatives of 4-phenylpiperidine:							
N-methyl base........... 124/10 mm.	16 (9)						2
N-methyl hydrochloride	$\begin{gathered} 184(196-198) \\ \mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O} \end{gathered}$	$\begin{aligned} & 67.9 \\ & 68.1 \end{aligned}$	8.7 8.5		$\begin{aligned} & 16.5 \\ & 16.8 \end{aligned}$	$\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NCl}$	2
N-methyl picrate N-ethyl base $138 / 0.9 \mathrm{~mm}$.	$\begin{aligned} & 234(244) \text { EtOH } \\ & 18(11) \end{aligned}$						2 2
N-ethyl hydrochloride...	$192(203-205)$	${ }_{69.2}^{69.4}$	9.2 8.9	5.9		$\mathrm{C}_{3} \mathrm{H}_{20} \mathrm{NCl}$	
picrate	107 EtOH	$54 \cdot 8$	$\begin{aligned} & 5.1 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 13 \cdot 1 \\ & 13 \cdot 4 \end{aligned}$			

Table 3 (Continued)
M. p. (ref. m. p. in
brackets); Recryst.
solvent
Analysis, Found (top
line), Reqd. or Calc.
(bottom line, opposite
molecular formula) Mol. \quad formula \quad Ref.
(5) Derivatives of trans-decahydroquinoline:

N-methyl picrate	172 (171-173)	$49 \cdot 9$	$5 \cdot 7$	14.9			
-methyl picrate	EtOH	$50 \cdot 2$	$5 \cdot 7$	$14 \cdot 7$		$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{7}$	k
N-methyl hydrochloride...	$186 \mathrm{AcMe}-\mathrm{Et}_{2} \mathrm{O}$	$63 \cdot 1$	$10 \cdot 8$		$18 \cdot 6$		
		$63 \cdot 3$	10.5		18.7	$\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{NCl}$	
N-ethyl picrate	112-114 EtOH	$51 \cdot 4$ 51.5	$6 \cdot 2$ 6.1	$14 \cdot 1$ 14.2			
rate	124 EtOH	$51 \cdot 5$ $52 \cdot 8$	$6 \cdot 1$ $6 \cdot 6$	14.2 13.6		$\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{7}$	
		$52 \cdot 7$	$6 \cdot 3$	$13 \cdot 7$		$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{7}$	
N-benzyl picrate	184-186 EtOH	$57 \cdot 4$	$5 \cdot 8$	$12 \cdot 5$			
		$57 \cdot 6$	$5 \cdot 7$	12.2		$\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{7}$	
(6) Derivatives of tropane:							
tropane hydrochloride...	Sublimes 206	$59 \cdot 6$	$10 \cdot 2$		$22 \cdot 3$		
	EtOH-Et t_{2}	59.5	9.9		22.0	$\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{NCl}$	
tropane picrate	308(d) (281) AcMe	$47 \cdot 5$ $47 \cdot 4$	$5 \cdot 2$ $5 \cdot 1$	$\begin{aligned} & 16 \cdot 0 \\ & 15 \cdot 8 \end{aligned}$			m
N-acetylnortropane 140-142/		$47 \cdot 4$	$5 \cdot 1$	$15 \cdot 8$ $9 \cdot 0$		$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{7}$	m
				$9 \cdot 1$		$\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}$	
N -ethylnortropane picrate	236-238 EtOH	$48 \cdot 7$ 48.9	$5 \cdot 5$ $5 \cdot 4$	$15 \cdot 3$ $15 \cdot 2$			

[^4]and raising the reaction temperature would, if anything, be expected to reduce specificity. We therefore think that the Czechoslovakian workers have failed to identify a second isomer in reaction mixtures where it was the minor component, and this belief is supported by some differences in the $850-900 \mathrm{~cm} .^{-1}$ region between their published i.r. curves and ours. The m. p.s of some of our quaternary salts are markedly higher than those recorded by Trojánek et al., but the data are not strictly comparable, as we were working with racemates in all cases. A twisted boat form has been suggested by Trojánek et al. for the camphidine quaternary salts. We agree that both a regular chair and a regular boat conformation would be very unlikely because of high internal strains, but we think that since twisting of the camphidine boat is a rather energy-consuming process because of rigidity introduced by the $-\mathrm{CH}_{2} \cdot \mathrm{CH}_{2}-$ bridge, a deformed chair conformation (part-way deformed towards the regular boat form) is more likely for the salts;* this suggestion is also supported by the n.m.r. evidence (see Part II). It is clear that the expression " axial approach " (of quaternising agent) used earlier must therefore be interpreted fairly broadly, in its geometrical connotation, in application to the camphidine quaternisations.

Experimental

Preparation of Bases.- N-Alkylcamphidines were prepared by reduction of the corresponding camphorimides in ether (NMe; NEt) or tetrahydrofuran ($\mathrm{NPr}^{\mathrm{n}} ; \mathrm{N} \cdot \mathrm{CH}_{2} \cdot \mathrm{Ph}$) with lithium aluminium hydride. 1-Alkyl-2-methylpyrrolidines were obtained from 1,4-dibromopentane

[^5]Table 4
Quaternisation results

				r			
Reaction ${ }^{\text {a }}$; Time; Yield ${ }^{\text {j }}$	brackets, with ref. superscript)	fraction	C	H	N	Formula	Name " (if " new ' compound)
Derivatives of camphidine:							
$>\mathrm{NMe}+\mathrm{EtI} ; 36 \mathrm{hr}$.	I fract. $e x \mathrm{AcMe}$; AcMe-Et O_{2} : (1) $245^{\circ}(238)^{7}$	Pure III(b)	$48 \cdot 3$	8.0	$4 \cdot 1$		
			$48 \cdot 3$	$8 \cdot 1$	$4 \cdot 3$	$\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{IN}$	N -ethyl-N-methylcamphidinium
	(2) $255(249)^{7}$ Picrates ${ }^{\text {d }}$ ex $\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}$:	Pure IIII(a)	$48 \cdot 6$	$8 \cdot 1$	$4 \cdot 2$		iodides
	151 (159) ${ }^{7}$	Pure IIII(b)	53.9	6.9	12.9		
			$53 \cdot 8$	$6 \cdot 6$	13.2	$\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{7}$	N-ethyl-N-methylcamphidinium
	178-180 (177) ${ }^{7}$	Pure III(a)	$53 \cdot 9$	6.9	12.9		picrates
$>\mathrm{NEt}+\mathrm{MeI} ; 24 \mathrm{hr}$.	```I- fract. ex AcMe; AcMe-Et2O: (1) }24 Picrate ex EtOH-Et2O: 150```	Pure IIII(b) Pure III(b)					
$>\mathrm{NMe}+\mathrm{Pr}^{\mathrm{n}}$; 48 hr ; $\mathbf{9 0 \%}$	I- fract. ex AcMe ; $\mathrm{AcMe}-\mathrm{Et}_{2} \mathrm{O}$: (1) 202 (184)	Pure III(b)	$\begin{aligned} & 49 \cdot 6 \\ & 49 \cdot 8 \end{aligned}$	8.2 8.3	$4 \cdot 1$ $4 \cdot 2$	$\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{IN}$	N-methyl-N-propylcamphidinium
	(2) 198 (193) ${ }^{7}$ Picrates ex EtOH:	Pure IIII(a)	49-8	8.2	3.9		iodides
	132	Pure IIII(b)	$54 \cdot 8$	$7 \cdot 1$	12.6		
	130	Pure III(a)	$54 \cdot 8$ $54 \cdot 6$	$6 \cdot 8$ $7 \cdot 2$	$\begin{aligned} & 12 \cdot 8 \\ & 12.7 \end{aligned}$	$\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{7}$	N -methyl-N-propylcamphidinium picrates
$>\mathrm{NPr}^{\mathrm{n}}+\mathrm{MeI} ; 24 \mathrm{hr}$.	```I- fract. ex AcMe; AcMe-Et2O: (1)}20 Picrate ex EtOH: 132```	Pure IIII(b) Pure III(b)					
$>\mathrm{NMe}+\mathrm{Ph} \cdot \mathrm{CH}_{2} \mathrm{I} ;$ minutes	I- fract. ex $\mathrm{CHCl}_{3}-\mathrm{AcMe}$; EtOH$\mathrm{Et}_{2} \mathrm{O}$: (1) $210(191)^{7}$	Pure IIII(a)	$56 \cdot 1$	$7 \cdot 3$	$3 \cdot 4$		
			$56 \cdot 1$	$7 \cdot 3$	$3 \cdot 6$	$\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{IN}$	N-benzyl-N-methylcamphidinium
	(2) $200(182)^{7}$	Pure IIII(b)	$55 \cdot 9$	$7 \cdot 2$	3.9		iodides
	169 (138) ${ }^{7}$	Pure III(a)	$\begin{aligned} & 59 \cdot 1 \\ & 59 \cdot 3 \end{aligned}$	$\begin{aligned} & 6 \cdot 1 \\ & 6 \cdot 2 \end{aligned}$	$\begin{aligned} & 11 \cdot 3 \\ & 11 \cdot 5 \end{aligned}$	$\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{7}$	N -benzyl- N -methylcamphidinium picrate
$>\mathrm{N} \cdot \mathrm{CH}_{2} \mathrm{Ph}+\mathrm{MeI} ; 24 \mathrm{hr} . ; 75 \%$	```I- fract. ex AcMe; AcMe-Et2O: (1) }20 Picrate ex EtOH: 148 (134)7```	Pure III(b) Pure III(b)	$59 \cdot 1$	$6 \cdot 2$	$11 \cdot 1$		N -benzyl- N -methylcamphidiniumı picrate

Table 4 (Continued)

Reaction ${ }^{\text {a }}$; Time; Yield ${ }^{\text {f }}$	Table 4 (Continued)					
			Analysis			
	Salt fractions ${ }^{6}$ Anion; solvents for fractn. or recryst, m. p. (ref. m. p. in	Structure or compn. of	Reqd. or Calc. (line opposite mol. formula); Found (other lines)			Formula
	brackets, with ref. superscript)	fraction	C	H	N	
$>\mathrm{NEt}+\mathrm{Pr}^{\mathrm{n}} ; 7$ days; 55\%	I- fract. ex AcMe-Et O_{2} : (1) 197	Pure III(c)	51.5	$8 \cdot 7$	3.9	
			51.3	8.5	$4 \cdot 0$	$\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{IN}$
	(2) 210	Pure III(d)	50.9	$8 \cdot 5$	3.5	
	Picrates ex EtOH: 118	Pure III(c)	$55 \cdot 6$	$7 \cdot 2$	$12 \cdot 2$	
			$55 \cdot 8$	7-1	$12 \cdot 4$	$\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{7}$
	121	Pure III(d)	$55 \cdot 6$	7•1	$12 \cdot 2$	
$>\mathrm{NPr}^{\mathrm{n}}+\mathrm{EtI} ; 48 \mathrm{hr}$; 55%	I - fract. ex $\mathrm{AcMe}-\mathrm{Et}_{2} \mathrm{O}:{ }^{\text {e }}$ (1) 210 Picrate ex EtOH	Pure III(d)				
	120	Pure III(d)				
Derivatives of 2-methylpyrrolidine:						
$>\mathrm{NMe}+\mathrm{EtI}$; minutes	I- fract. $e x$ EtOH-Et $\mathrm{I}_{2} \mathrm{O}$: (l) 320	Mixt. mainly	$37 \cdot 6$	$7 \cdot 4$	$5 \cdot 4$	
		IV(a)	37.6	$7 \cdot 1$	$5 \cdot 5$	$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{IN}$
	Picrate $e x$ EtOH: 294	Possibly pure	$47 \cdot 3$	$5 \cdot 6$	$15 \cdot 7$	
		IV(a)	47.2	$5 \cdot 6$	$15 \cdot 7$	$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{7}$
$>\mathrm{NEt}+\mathrm{MeI} ;$ seconds	I- fract. ex AcMe; AcMe-Et $\mathrm{I}_{2} \mathrm{O}$: (1) 326	Pure IV(b)	$37 \cdot 5$	$7 \cdot 1$	$5 \cdot 6$	
	(2) 316	$\begin{aligned} & \text { Mixt. mainly } \\ & \text { IV(a) } \end{aligned}$	$37 \cdot 6$	7•1	$5 \cdot 5$	$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{IN}$
	Picrates ex EtOH: 284	Pure IV(b)	47.3	$5 \cdot 6$	$15 \cdot 7$	
		Pure IV(b)	$47 \cdot 2$	$5 \cdot 6$	$15 \cdot 7$	$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{7}$
	294	Possibly pure				
$>\mathrm{NMe}+\mathrm{Pr}^{\mathrm{n}}$; 6 hr.	I- fract. ex EtOH ; $\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}$: (1) 178	Mixt. mainly	$40 \cdot 4$	$7 \cdot 3$	$5 \cdot 1$	
		IV(b)	$40 \cdot 1$	$7 \cdot 4$	$5 \cdot 2$	$\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{IN}$
	(2) 206	$\begin{aligned} & \text { Mixt. mainly } \\ & \text { IV(a) } \end{aligned}$	$40 \cdot 2$	$7 \cdot 2$	$5 \cdot 1$	
	Picrates ex EtOH: 148					
	148	Possibly pure IV(b)	$48 \cdot 8$ 48.6	6.2 5.9	$15 \cdot 3$ $15 \cdot 1$	$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{7}$
	186	Possibly pure IV(a)	$48 \cdot 4$	$5 \cdot 8$	$14 \cdot 9$	

Table 4 (Continued)
Name " (if " new " compound)
1-benzyl-1,2-dimethylpyrrol-
idinium picrate
1-benzyl-1,2-dimethylpyrrol-
idinium iodide
 Reaction ${ }^{a}$; Time; Yield ${ }^{j}$
$\Rightarrow \mathrm{NMe}+\mathrm{Ph} \cdot \mathrm{CH}_{2} \cdot \mathrm{I}$; minutes
$>\mathrm{NCH}_{2} \mathrm{Ph}+\mathrm{MeI}$; minutes
$>\mathrm{NEt}+\mathrm{Pr} \mathrm{I}$; 48 hr ; 75\%
$>\mathrm{NPr}^{\mathrm{n}}+\mathrm{EtI} ; 24 \mathrm{hr}$.
Table 4 (Continued)

- ${ }^{\text {ame }}$ (if " new " compound)

Structure or compn. of fraction	Analysis Reqd. or Calc. (line opposite mol. formula); Found (other lines)			Formula				
	C	H	N					
Mixt.								
Mixt. Mixt.								
	48.9	$6 \cdot 1$	14.7					
	$48 \cdot 6$	5.9	$15 \cdot 1$	$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}$				
Mixt.	$39 \cdot 7$	$7 \cdot 4$	$46.9{ }^{f}$					
	$40 \cdot 1$	$7 \cdot 4$	$47 \cdot 2$	$\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{IN}$				
Mixt. Mixt.								
Mixt.								
Mixt.	$49 \cdot 7$	$6 \cdot 1$	$14 \cdot 2$					
	Mixt.			$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{5}$				
Mixt.	$42 \cdot 6$	8.1	$5 \cdot 1$					
	$42 \cdot 4$	$7 \cdot 8$	$4 \cdot 9$	$\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{IN}$				
Mixt.	50.0	6.5	$14 \cdot 6$					
	50.0	6.2	14.6	$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{7}$				
Mixt.	$50 \cdot 1$	6.5	$14 \cdot 2$					
Mixt.	50.5	6.6	$38.6{ }^{f}$					
	50.8	$6 \cdot 6$	38.4	$\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{IN}$				
Possibly pure V(b) Possibly pure V(a)	55.5	$5 \cdot 7$	$13 \cdot 1$					
	$55 \cdot 5$	5.5	13.0	$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{7}$				
	$\tilde{5} \cdot 2$	$5 \cdot 6$	12.9					
Mixt.	50.9	6.9	$4 \cdot 4$					
	$50 \cdot 8$	$6 \cdot 6$	$4 \cdot 2$		Mixt. Salt fractions ${ }^{b}$			

Anion; solvents for fractn. or
recryst. m. p. (ref. m. p. in I- fract. ex $\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}$:
(1) 320
Picrates fract. ex EtOH :
(1) 272
(2) 264
$\mathrm{I}-$ fract. $e x \mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}$:
(1) 318 Picrates fract. ex EtOH :
(1) 264
(2) 256
I - fract. $e x \mathrm{AcMe}$:
(1) 220
Picrates fract. ex EtOH :
(1) 200
(2) 134
I- fract. ex $A \mathrm{cMe}$:
$\underset{\text { Picrates fract. ex } \mathrm{EtOH} \text { : }}{ } \mathbf{1 5 7}$.
(2) 126

(2) 156
$\mathrm{I}-$ fract. ex $\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}$
(1) 172 (2) 164 Reaction ${ }^{a}$; Time; Yield ${ }^{j}$ \quad Derivatives of 2 -methylpiperidine
$>\mathrm{NMe}+\mathrm{EtI}$; minutes
$>\mathrm{NEt}+\mathrm{MeI} ; 1 \mathrm{~min}$.
$>\mathrm{NMe}+\mathrm{Pr}^{\mathrm{D} I} ; 24 \mathrm{hr}$.
$>\mathrm{NPr}^{\mathrm{n}}+\mathrm{MeI} ;$ minutes
$>\mathrm{NMe}+\mathrm{Ph} \cdot \mathrm{CH}_{2} \mathrm{I} ;$ minutes
$>\mathrm{N} \cdot \mathrm{CH}_{2} \mathrm{Ph}+\mathrm{MeI}:$ seconds
Table 4 (Continued)
Analysis
Reqd. or Calc.
Reqd. or Calc.
(line opposite mol.
punor ؛ (elnuriof

$13 \cdot 1$
$13 \cdot 0$
$13 \cdot 5$$\quad \mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{7}$
1-ethyl-1-methyl-4-phenyl-
piperidinium picrate

		4 (Continue				
					Analy	
	Salt fractions ${ }^{\text {b }}$ Anion; solvents for fractn. or recryst. m. p. (ref. m. p. in	Structure or compn. of		or posi a) ; er li	alc. mol. ound s)	
Reaction ${ }^{\text {; }}$; Time; Yield ${ }^{\text {j }}$	brackets, with ref. superscript)	fraction	C	HI	N	Formula
$>\mathrm{N} \cdot \mathrm{CH}_{2} \mathrm{Ph}+\mathrm{MeI}$: seconds	Picrates fract. ex EtOH (1) 126	Possibly pure V(b)				
	(2) 156	$\underset{\mathrm{V}(\mathrm{a})}{\substack{\text { Possibly }}}$				
Derivatives of 4-phenylpiperi						
$>\mathrm{NMe}+\mathrm{EtI} ; 2 \mathrm{hr}$.	I- fract. ex AcMe: (1) $168(170 ; 181)^{2, g}$	Nearly pure VI(a)				
	(2) $140(140 ; 146)^{2, h}$	Possibly mainly VI(b)				
	Picrate $e x \mathrm{EtOH}$: 124					
		Nearly pure VI (a)			$\begin{aligned} & 13 \cdot 1 \\ & 13 \cdot 0 \end{aligned}$	$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{7}$
	114	Possibly mainly VI(b)				
$>\mathrm{NEt}+\mathrm{MeI}$; minutes	I- fract. ex AcMe: (1) $142(140 ; 146)^{2, h}$ (2) Oily residues	Pure VI(b)				
	Picrate ex EiOH: 131	Pure VI(b)	55.2	$5 \cdot 5$	$13 \cdot 2$	
			55.5	$5 \cdot 5$	13.0	$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{7}$
Derivatives of trans-decahydr	noline:					
$>\mathrm{NMe}+\mathrm{EtI} ; \mathrm{l} \mathrm{hr}{ }^{\text {d }}$	I- fract. ex AcMe: (l) 201	Mixt.	$46 \cdot 8$	7.7	$4 \cdot 3$	
			$46 \cdot 6$	$7 \cdot 8$	$4 \cdot 5$	$\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{IN}$
	Picrolonate fract. ex EtOH: (1) 112-150 range	Mixt.	58.8	$7 \cdot 1$	$15 \cdot 6$	
			$59 \cdot 3$	$7 \cdot 0$	$15 \cdot 7$	$\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{5}$
	Perchlorate fract. ex EtOH: (1) 148	Possibly pure VII(b)	$\begin{aligned} & 51 \cdot 4 \\ & 51 \cdot 2 \end{aligned}$	$\begin{aligned} & 8.8 \\ & 8.5 \end{aligned}$		$\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{NClO}_{4}$
	(2) 142	Mixt.				
$>\mathrm{NEt}+\mathrm{MeI}$; minutes ${ }^{\text {c }}$	I- fract. ex AcMe : (1) 191	Mixt.	$46 \cdot 8$	$7 \cdot 8$	$4 \cdot 5$	
			$46 \cdot 6$	$7 \cdot 8$	4.5	$\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{IN}$
	Picrate fract. ex EtOH: (1) 94-105 range	Mixt.	52.8	6.5	$13 \cdot 8$	
			52.7	$6 \cdot 4$	13.7	$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{7}$

Table 4 (Continued)

 $>$ NEt + MeI; minutes *
$>\mathrm{NMe}+\mathrm{Pr}^{\mathrm{n}}{ }^{\boldsymbol{i}} ; 2 \mathrm{hr}$.
$>\mathrm{NPr}^{\mathrm{n}}+\mathrm{MeI} ;{ }^{2}$ hr.

[^6](2) 310
Table 4 (Continued)

Name " (if " new " compound)
Formula
$\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{IN}$
$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{7}$

Analysis
Reqd. or Calc.
 Anion; solvents for fractn. or Structure or formula); Found Anion; solvents for fractn. or
recryst. m. p. (ref. m. p. in brackets, with ref. superscript) Mixt. $\begin{array}{lll}42.3 & 7.1 & 45.0^{5} \\ 42.7 & 7.1 & 45.2\end{array}$
$\begin{array}{lll}50 \cdot 0 & 5 \cdot 9 & 14.7 \\ 50.2 & 5 \cdot 8 & 14.7\end{array}$ $50 \cdot 2$
\longrightarrow

Picrates fract. ex EtOH:
(1) 296

$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{7}$

[^7](2) 290

(IIId) ${\underset{E t}{N+} X^{-}+1}_{N_{t}}$

(IVb)
$\stackrel{1}{\times}$
$\frac{1}{x}$
ゅi
 j Yields essentially theoretical unless otherwise stated.
and the primary alkylamines. Commercial samples of 2 -methylpiperidine and trans-decahydroquinoline were converted into N-methyl derivatives by the Clarke-Gillespie process ${ }^{13}$ and into other N-alkyl derivatives by reduction of the corresponding N-acyl-amines with lithium aluminium hydride in ether. The 4 -phenylpiperidines were synthesised via the related $1,2,3,6-$ tetrahydropyridines by a described procedure. ${ }^{14}$ Tropane obtained (80%) by the modified ${ }^{15}$ Wolff-Kishner reduction of commercial tropinone was (2 g .) oxidised in water ($20 \mathrm{c} . \mathrm{c}$.) containing potassium hydroxide (2.3 g .) with potassium permanganate (7 g .) added during 1 hr . with ice-cooling. After a further 12 hr . at room temperature the crude nortropane was isolated and acetylated, and the N-acetyl derivative was reduced with lithium aluminium hydride in ether. The resultant N-ethylnortropane was shown to be almost free from tropane by g.l.c. analysis, and was finally purified via the picrate.

Physical properties and analytical data for the bases, their derivatives, and some synthetical intermediates are given in Table 3.

Preparation and Fractionation of Quaternary Salts.-Quaternary iodides (or mixtures of stereoisomeric iodides) were prepared by treatment of the base with a large excess of the alkyl halide in an equal volume of acetone in presence of finely ground anhydrous potassium carbonate (this was omitted in the tropane quaternisations, where the insolubility of the quaternary salts in organic solvents made their separation from the carbonate difficult). The crude quaternary iodides were extracted with chloroform and fractionated to give the results indicated in Table 4.

Quaternary picrates, picrolonates, and perchlorates were made by appropriate " double decomposition" from the iodides in aqueous solution, in critical cases with stoicheiometric quantities of reagents in the minimum of solvent. Quaternary iodide mixtures in the tropane system were insufficiently soluble for convenient n.m.r. examination, and were accordingly converted in hot aqueous solution into the corresponding chloride mixtures by treatment with silver chloride.

The simple indication " mixt." is given in Table 4 when no reliable information about the composition of a fraction is available from n.m.r. spectroscopy or otherwise, but there is obvious evidence of heterogeneity from attempts at fractional crystallisation. Statements about composition of other salt fractions are made on consideration of fractionation evidence and n.m.r. spectra which were run on pure recrystallised iodides of the camphidine series, nearly pure recrystallised iodides of the 4-phenylpiperidine series, recrystallised but (usually) heterogeneous iodides with some salts of the 2 -methylpyrrolidine series, and total crude iodides (chlorides in the tropane system) in other cases.

We thank the D.S.I.R. for maintenance grants (to J. W. and A. T.) and the University of Sheffield for research facilities (to J. M. McK.).

Department of Chemistry, The University, Sheffield 10. [Received, June 30th, 1964.]
${ }^{13}$ Clarke, Gillespie, and Weisshaus, J. Amer. Chem. Soc., 1933, 55, 4571.
14 Schmidle and Mansfield, J. Amer. Chem. Soc., 1956, 78, 425, 1702.
${ }^{15}$ Huang-Minlon, J. Amer. Chem. Soc., 1949, 71, 3301.

[^0]: ${ }^{1}$ This and the following three Papers are regarded as Parts VII-X in the series "Stereochemical Investigations of Cyclic Bases "; Part VI, Jewers and McKenna, J., 1960, 1575.
 ${ }^{2}$ Mills, Parkin, and Ward, J., 1927, 2613.
 ${ }^{3}$ Koczka and Bernáth, Chem. and Ind., 1958, 1401.

[^1]: * Hydriodide production especially in a rather slow alkylation with (quite pure) ethyl or higher alkyl iodide may be remarkably extensive even under mild reaction conditions in the absence of inorganic base; where such production is not associated with prior degradation of an unstable quaternary salt (as, e.g., with N - 6β-cholestanyltrimethylammonium iodide) the reaction is not too readily interpreted, as it seems improbable that the organic base is attacking the iodide in an elimination process under the conditions being employed.
 ${ }^{4}$ Fodor, (a) Experientia, 1955, 11, 129; (b) Tetrahedron, 1957, 1, 86; (c) Chem. and Ind., 1961, 1500. 5 Inter al. (a) Findlay, J. Amer. Chem. Soc., 1953, 75, 3204; (b) Zeile and Schulz, Chem. Ber., 1955, 88, 1078.
 ${ }^{6}$ Closs, J. Amer. Chem. Soc., 1959, 81, 5456.
 7 Trojánek, Komrsová, Pospišek, and Cekan, Coll. Czech. Chem. Comm., 1961, 26, 2921.
 ${ }^{8}$ Moynehan, Schofield, Jones, and Katritzky, J., 1962, 2637.
 ${ }^{9}$ See Houben-Weyl, "Methoden der Organischen Chemie," 4th edn., Vol. 11/1, p. 976.

[^2]: * Perhaps the most important evidence for assignment of an eq-NMe structure to the hydrochloride of any basic tropine or tropane is the n.m.r. spectroscopic relationship established by Closs ${ }^{6}$ between the hydrochloride of pseudotropine and the related N-ethyl- N-methyl quaternary salts, the configurations of which are known from analogy with Fodor's results and from X-ray analysis of N-ethylnortropine methobromide. ${ }^{11}$ It is clear, therefore, that our configurational assignments for tropane quaternary salts depend ultimately on Fodor's classical work with the tropines, and on the more recent X-ray work, and indeed we made these salts mainly for the degradative investigation described in Part III.
 ${ }^{10}$ McKenna, White, and Tulley, Tetrahedron Letters, 1962, 1097.
 ${ }^{11}$ Quoted by Fodor, ref. $4 c$.

[^3]: 12 Smith and White, Acta Cryist., 1963, 16, 930.

[^4]: a "New" compounds italicised. ${ }^{b}$ Rice and Grogan, J. Org. Chem., 1957, 22, 185. " von Auwers, J. prakt. Chem., 1922, 105, 108. ' Löffler, Ber., 1910, 43, 2046. e Signaigo and Adkins, J. Amer. Chem. Soc., 1936, 58, 709. ${ }^{\prime}$ Stravrovskaya, J. Gen. Chem. U.S.S.R., 1955, 25, 133. ${ }^{g}$ Lipp, Annalen, 1896, 289, 227. h Winans and Adkins, J. Amer. Chem. Soc., 1932, 54, 306. ${ }^{i}$ Ladenburg, Annalen, 1899, 304, 76. ${ }^{3}$ Bunzel, Ber., 1889, 22, 1054. * Bailey, Haworth, and McKenna, J., 1954, 967. ${ }^{2}$ Ladenburg, Ber., 1883, 16, 1408. ${ }^{m}$ Willstätter, Annalen, 1901, 31\%, 328. ${ }^{n}$ All m. p.s of camphidine derivatives quoted in ref. 7 are for active compounds rather than racemic.

[^5]: * Added in Proof: Recent X-ray work (to be published shortly) by Dr. A. J. Smith and Mr. P. L. Jackson of this Department has confirmed this suggestion for the N-ethyl base methiodide, which is also shown to have the confirmation ($a x-\mathrm{NMe}$) assigned on other grounds in this Paper.

[^6]: $>\mathrm{NMe}+\mathrm{PhCH}_{2} \mathrm{I} ; \mathrm{min}$. $>\mathrm{N} \cdot \mathrm{CH}_{2} \mathrm{Ph}+\mathrm{MeI}$; min. Derivatives of Tropane:
 $>\mathrm{NMe}+\mathrm{EtI} ;$ minutes

[^7]: Yield ${ }^{j}$
 Reaction ${ }^{\text {a }}$; Time;
 $>\mathrm{NEt}+\mathrm{MeI} ;$ seconds

